

Syllabus Course description

Course title	Automatic Control				
Course code	47511				
Scientific sector	ING-INF/04				
Degree	Master in Industrial Mechanical Engineering				
Semester	I				
Year	I				
Academic Year	2021-2022				
Credits	5				
Modular	No				

Total lecturing hours	28 hrs				
Total exercise hours	20 hrs				
Attendance	Attendance at lectures is strongly recommended. Attendance at exercise sessions is required.				
Prerequisites	none				
Course page	https://www.unibz.it/en/faculties/sciencetechnology/mas ter-industrial-mechanical-engineering/course- offering/?academicYear=2020				

Specific educational objectives	The course provides an introduction to the fundamentals of control theory, at an introductory/intermediate level. Topics covered include: Laplace Transform, Root Locus, Frequency Design Methods and State Space Techniques (time permitting). The course is aimed at beginning graduate students and focuses on building understanding
	and intuition. Examples and exercises that use Matlab and Simulink will be given.

Lecturer	Prof. Karl von Ellenrieder Facoltà di Scienze e Tecnologie Building K, Room 2.08 Tel.: +39 0471 017172 E-mail: karl.vonellenrieder@unibz.it Web: https://www.unibz.it/en/faculties/sciencetechnology/phd-in-food-engineering-and-biotechnology/phd-students-feb/person/37038-karl-dietrich-von-ellenrieder				
Scientific sector of the lecturer	ING-INF/04 - Automatica				
Teaching language	English				
Office hours	As listed on Cockpit or by appointment				
Teaching assistant (if any)	N/A				
Office hours	As listed on Cockpit or by appointment				
List of topics covered	The course covers the following topics: 1. Introduction				

Teaching format	Classroom lectures and exercises			
	3. State Space Control			
	design approach			
	b. frequency methods – fundamental ideas and			
	approach			
	 a. root locus – fundamental ideas and design 			
	2. Classical Control			
	c. Effects of feedback on stability			
	b. Linear stability			
	a. Block diagrams			

Learning outcomes (ILOs)

Knowledge and understanding

- 1. Applying basic feedback principles to a broad range of dynamic system models (such as those typically learned in the 1st cycle).
- 2. Defining feedback loop requirements for improving system steady state response.
- 3. Understanding conditions that guarantee closed loop system stability.
- 4. How to design controllers via Root Locus, Frequency Response and State Space Techniques.

Applying knowledge and understanding

5. Analyzing, developing and presenting control systems for applications that span multiple disciplines through exercises, which complement the lectures.

Making judgements

6. On the choice of analytical and numerical tools to use in the exercises. This may require you to integrate knowledge, handle complexity, and formulate judgements with incomplete data.

Communication skills

7. In-class exercises will require you justify your solutions/conclusions concisely (in clear and simple language).

Learning Skills

8. Students will be required to develop a proficiency in Matlab and Simulink with a few in-class examples, but mostly on their own. This is intended to help students develop the ability to study in a manner that is largely self-directed or autonomous.

Assessment	Formative assessment				
	Form	Length /duration		ILOs assessed	
	Exercises	20 h	ours total	1-8	
	Summative assessment				
	Form	%	Length /duration	ILOs assessed	
	Exercises	15		1-8	
	Final Exam	85	4 hours	1-6	
Assessment language	English				
Evaluation criteria and criteria for awarding marks					
	i	•	ed to receive an o points in order to pa	_	
Required readings	Lecture notes and exercises will be available on the UniBZ Open Learning Environment (OLE)				
Supplementary readings	Additional books and articles may be recommended by the instructor during the course.				