

Syllabus Course description

Course title	Introduction to Robot Control
Course code	43079
Scientific sector	ING-INF/04
Degree	Bachelor in Industrial and Mechanical Engineering
Semester	Ι
Year	III
Academic Year	2021/22
Credits	6
Modular	//

Total lecturing hours	36
Total lab hours	0
Total exercise hours	24
Attendance	Recommended
Prerequisites	Lectures and exercises of Mathematical Analysis I and II, Geometry, Physics I, Mechanics of Machinery
Course page	

Specific educational	The student should understand the basic principles of the
objectives	theory of the control of robot manipulators.

Lecturer	Prof. Angelika Peer, e-mail: <u>angelika.peer@unibz.it</u> , <u>https://www.unibz.it/de/faculties/sciencetechnology/academic-</u> <u>staff/person/38684-angelika-peer</u>		
Scientific sector of the lecturer	ING-INF/04 – AUTOMATION		
Teaching language	English		
Office hours	After consultation and agreement with lecturer		
Teaching assistant (if any)	-		
Office hours	-		
List of topics covered	 Robot kinematics and dynamics Trajectory planning Motion control Interaction control Vision-based control Remote control Computer-aided simulation and design 		
Teaching format	The lessons are divided into theoretical classroom lessons, and exercises using blackboard and slides as well as exercises.		
Learning outcomes (ILOs	The learning outcomes need to refer to the Dublin Descriptors:		

Knowledge and understanding
Knowledge and understanding in the field of:

1. Theory of control of robot manipulators
 Applying knowledge and understanding Ability to apply knowledge for solving given problems, including solving them with numerical data and with the help of software packages like Matlab/Simulink.
Making judgements 3. Ability to judge plausibility of results.
<u>Communication skills</u> 4. Maturing of technical-scientific terminology.
 <u>Ability to learn</u> Learning skills to independently study and apply methods of systems and control for specific applications beyond topics covered in this lecture.

Assessment	Formative assessment			
	Form	Leng	th /duration	ILOs assessed
	In-class exercises	Conti cours exerc	nuously as part of e-accompanying ises	1-5
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
Accession to the second	Urai	100	30 minutes	1-5
Evaluation criteria and criteria for awarding marks	Judged will be • the cor mather of num • the cor argume	: rectness natical s erical re rectness ents pres	s of the approach and teps of the solution, t sults; s of the provided answ sented and the termin	I the the calculation wers and hology used.
				

Required readings	Blackboard and slides
Supplementary readings	Introduction to Robotics – Mechanics and Control, John Craig, Pearson, 2018
	Robotics – Modelling, Planning and Control, Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo, Springer, 2009.
	Robot Modeling and Control, Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Wiley, 2006.
	Modern Robotics – Mechanics, Planning and Control,

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Kevin M. Lynch, Frank C. Park, Cambridge, 2018.
Modelling, Indentification & Control of Robots, W. Khalil & E. Dombre, Kogan Page Science, 2004
Robotics, Vision and Control, Peter Corke, Springer, 2011