

Master in Applied Linguistics (LM-39)

Course title: Computer Programming

Year: 1st year

Semester: 1st semester - 2nd semester

Course code: 54102

Scientific sector: INF/01

Course teacher: Gennari Rosella

gennari@inf.unibz.it

Modular: YES

Other teachers Syed Mehdi Rizvi
syedmehdi.rizvi@polimi.it

srizvi@unibz.it

Credits: 8

Total lecture/laboratory hours: Module 1 (R. Gennari): 60 hours;
Module 2 (M. Rizvi): 30 hours.

Total office hours: 18 (Module 1) + 6 (Module 2)

Office hours: By previously taking appointment via mail, with subject “course
in BX”.

Attendance: according to regulation

Teaching language: English

Prerequisites: none

Course description: The course is for students of the humanities area.

It offers an introduction to the basics of computer programming.

The course uses the Python programming language and Natural
Language Processing (NLP) packages or modules.

Specific educational objectives: The aim is to provide students with an adequate knowledge of
general computer science concepts, and the acquisition of specific

knowledge and mastery of the basics of Python programming for
their degree course.

For specific disciplinary objectives, students are referred to list of

topics.

List of covered topics: This course introduces students to the basics of Python
programming, and topics relevant for applied linguistics with

Python.

Topics of Module 1 are as follows:

(1) what computer science is;
(2) how a computing device/computer interacts;

(3) how to write basic Python programs with atomic
statements;

(4) how to interpret Python programs;

(5) how to test Python programs;
(6) how to import relevant Python packages (time, csv,

string,...);
(7) how to update/install new Python packages;

mailto:gennari@inf.unibz.it
mailto:syedmehdi.rizvi@polimi.it
mailto:srizvi@unibz.it

(8) how to write Python programs with compound

statements:
a. branching for decision making (if, else, elif);

b. bounded/unbounded iteration for repetitions (for,
while);

(9) simple and compound data in Python;

(10) how to manage Python compound data:
a. lists, dictionaries, tuples, sets and further data;

b. how to create them;
c. how to manipulate them;

d. how to traverse them with bounded iteration;
e. how to create filter and map with

comprehension;

(11) how to manage user-defined functions,
without/with parameters, in Python;

(12) how to manage raw text-files in Python;
(13) how to manage csv text-files in Python;

(14) how to manage basic exceptions in Python;

(15) how to manage regular expressions (re) in
Python;

(16) how to process text with natural-language rule-
based approaches in Python (e.g., via nltk) in order to:

a. segment text,
b. process text with lexical patterns such as stop-

words,

c. tokenize text,
d. pos-tag text,

e. process text with pos-tags (e.g., until Chapter 5
of http://www.nltk.org/book/).

Topics of Module 2 are project-based. The following list is only
indicative of possible topics, which may change according to the

students’ projects and skills:
(1) basics of html and json for the web;

(2) how to process html data in Python;

(3) how to process json data in Python;
(4) how to plot data in Python, e.g., with pandas (basics,

optional)
(5) how to process speech in Python, e.g., with Google

services;
(6) how to play sound files in Python;

(7) how to create packages in Python;

(8) how to create mash-up projects in Python.

Teaching format: The course adopts experiential teaching, besides constructionism.

It has three main types of classes.

FRONTAL LECTURE CLASSES
Frontal lectures use slides, videos and code snippets as main

material. Each frontal lecture is:

• c. 50 minute long in in-presence classes,

• c. 30 minute long in online classes via the TEAMS app.

Frontal lectures mainly take place in Module 1.

CHALLENGE BASED CLASSES
Challenge-based classes span the entire course. The reason is

that programming is learnt by “doing”, that is, by experiencing it,

hands-on, over and over.

Such classes challenge students to work on:

• brief programming exercises, with program snippets to
correct, comment, test or complete; they aim at making

students focus on a specific part, explained in the
course;

• longer programming exercises, with programs to

complete or write from scratch according to given

specifications; they aim at making students connect
different parts, explained in the course.

The TEAMS app is used to distribute challenges, which are held

during class hours. Their resolutions are also discussed during

class hours.

WORKSHOP BASED CLASSES
Workshops are held in Module 2. They are similar to challenge-

based classes, in that students are asked to program. Whereas in
the latter classes the teacher gives specific programming

exercises, in workshop-based classes students need to choose a

programming project to tackle.

The teacher offers students a range of challenges and possible
resolutions. Students need to start from these and mash them up

in their own programming project, according to the given

requirements.

Learning outcomes: Knowledge and understanding:

1. understanding the fundamentals of computer science,
2. understanding a Python program.

Analysis and application of knowledge:

3. analysing Python programs for resolving computational

problems,
4. and applying simple resolution algorithms, by writing short

Python programs.

Making judgments;
5. acquiring critical thinking and making judgments related to the

use of Python for tackling computational problems:

(a) how to abstract away details,
(b) how to model a computational problem (e.g., what data to

use),
(c) how to resolve it (what algorithm to use),

(d) how to resolve it optimally (e.g., when and how to define a

function),
(e) how to take a critical thinking stance towards one’s approach

to resolving problems.

Learning and communicating:

6. ability to learn and work independently,
7. ability to learn and work collaboratively,

8. knowing how to reflect and communicate one's thoughts on a
problem and how to solve it computationally.

Assessment: There are two alternative assessments: Intermediate
Assessment; Final Assessment.

Intermediate Assessment
Students can take an intermediate exam, split in two parts, one

per Module:
- programming exercises, based on material of Module 1,

at the end of Module 1;
- a mashup project, based on material of Module 2,

discussed at the end of Module 2.

Passing the part related to Module 1 is necessary for discussing
the mashup project at the end of Module 2.

Final Assessment

The final exam is held during the exam day. It consists of two

parts, one per Module:
- challenges, namely, programming exercises, based on

material of Module 1;
- a mashup project, based on material of Module 2.

Students tackle programming exercises of Module 1 during the

exam day. Students work on their mashup project before the
exam day and they submit it during the exam day.

Evaluation criteria and criteria for

awarding markings:

The evaluation of the course is based on:

(1) the evaluation for the part of the assessment related to

Module 1; the minimum for passing it is 12 out of 21;
(2) a positive evaluation for the part of the assessment

related to Module 2; the minimum for passing it is 6 out
of 11.

Marks for Module 1 considers the correctness of resolutions of
programming exercises, the quality of resolutions, as well as the

displayed analytical and reflective skills.

Marks for Module 2 considers whether the mashup project
satisfies the requirements given during the course, the overall

quality of the project (e.g., its complexity) and its presentation.

Required reading: Given during classes.

Supplementary reading: Given during classes.

Software: TEAMS for managing the course material and communication.

Goole Colaboratory for running Pyton programs, accessed via

the student’s unibz account (not others).

