

1/3

COURSE DESCRIPTION – ACADEMIC YEAR 2021/2022

Course title Advanced Software Design Techniques

Course code 76087

Scientific sector INF/01

Degree Master in Software Engineering for Information Systems (LM-18)

Semester 1

Year 1

Credits 6

Modular No

Total lecturing hours 40

Total exercise hours 20

Attendance

Not compulsory. Non-attending students have to contact the lecturer

at the start of the course to agree on the modalities of the
independent study.

Prerequisites Basic courses in Programming and Software Engineering. Familiarity

with UML and software modelling. Familiarity with the basics of object-
orientation and automated testing.

Course page https://ole.unibz.it/

Specific educational
objectives

The course belongs to the type caratterizzanti – discipline informatiche
and is part of the Foundations in Software Engineering.

The course objective is to familiarize students with advanced tools and

techniques to design a software-based system, understanding in
theory and practice their applicability to achieve software

requirements and the expected consequences in the implementation

of each one. Students will acquire skills and competencies resulting
from identifying requirements and implementing them through

various design techniques, focusing on improving code maintenance
and introducing extensibility in the suitable spots. Design evaluation

is approached through the analysis of metrics and visualization

techniques. The students are exposed to problem-solving techniques
that allow the synthesis of software design solutions satisfying the

system's requirements.

Lecturer Martins Guerra Eduardo

Contact LA Piazza Domenicani 3, eduardo.guerra@unibz.it

Scientific sector of lecturer ING-INF/05

Teaching language English

Office hours During the lecture times, and by arrangement by email

Lecturing Assistant (if any) --

Contact LA --

Office hours LA --

List of topics • Design Patterns Application and Interaction

• Evolutionary Design Techniques (TDD, BDD, Refactoring)

• Domain Modeling (DDD)

• Components and Modularization

• Framework Development (Extension Points, Reflection,

Metadata)

https://ole.unibz.it/
mailto:eduardo.guerra@unibz.it

2/3

• Software Design Evaluation (Code Metrics, Code Smells,

Software Visualization)

Teaching format Frontal lectures, exercises; team and/or individual projects.

Learning outcomes Knowledge and understanding

• D1.2 To be able to analyze and solve even complex problems in

the area of Software Engineering for Information Systems with
particular emphasis on the use of studies, methods, techniques

and technologies of empirical evaluation;

• D1.4 To know in depth the principles, structures and use of

computer systems for the automation of information systems;

• D1.5 To know the fundamentals, techniques and methods of
design, customization and implementation of software to support

the automation of new generation information systems for
industrial production and business;

Applying knowledge and understanding
• D2.4 To be able to define an innovative technical solution to an

application problem that meets technical, functional and

organisational constraints and requirements;

• D2.5 To be able to extend and modify in an original way an
existing technical solution or a formal model taking into account

changed conditions, requirements and evolution of the
technology;

Making judgments

• D3.4 To be able to reconcile the objectives of the project that are
in conflict, to trade-off cost, resources, time, knowledge or risk;

Communication skills

• D4.5 To be able to prepare and conduct technical presentations

in English;

• D4.6 To be able to interact and collaborate during the
implementation of a project or research with peers and experts;

Learning skills:

• D5.2 To be able to keep up to date independently with
developments in the most important areas of information

technology;

• D5.3 In the context of a problem solving activity, to be able to
extend knowledge, even if incomplete, taking into account the

final objective of the project;

Assessment The assessment is based on the lab assessment and the final exam.
The lab assessment is composed of a number of assignments. The

assignments motivate the students to study throughout the semester.
The final exam evaluates the students' understanding of the

theoretical backgrounds and the ability of solving problems.

The students will have the opportunity to perform optional activities

during the course, such as:

3/3

● Programming challenges, where the student would need to

perform a programming task
● Tool or technology research, where the students would need

to search information about a tool or technology
● Quests, where the student will be challenged to search for

real examples in local companies;

● Judgements, where students will judge a technology or
technique presenting both positive and negative points;

● Participation and performance in educational games and
quizzes performed in the classroom.

The optional activities completed will score points in a gamification

system that will be used to give bonus points for the students in their

final grade.

Assessment language English

Assessment typology Monocratic

Evaluation criteria and
criteria for awarding

marks

For attending students, the grade is calculated based on (i) the lab
assessment (50% weight) and (ii) the final exam (50% weight).

Optional activities will be used for a score in a Gamification system.

Based on students’ position on ranking, they might get some bonus in
their final grade.

For non-attending students, if they can follow the delivery schedule

for the lab assessments, the grade is calculated the same way. Unless,

the grade is calculated based only on the final exam that will include
questions related to the labs’ content.

Required readings The course will be based on lecture notes.

Supplementary readings • Johnson, R., & Vlissides, J. (1995). Design patterns. Elements

of Reusable Object-Oriented Software Addison-Wesley,

Reading.

• Beck, K. (2003). Test-driven development: by example.

Addison-Wesley Professional.

• Fowler, M. (2018). Refactoring: improving the design of

existing code. Addison-Wesley Professional.

• Evans, E., & Evans, E. J. (2004). Domain-driven design:

tackling complexity in the heart of software. Addison-Wesley

Professional.

• Lanza, M., & Marinescu, R. (2007). Object-oriented metrics in

practice: using software metrics to characterize, evaluate, and

improve the design of object-oriented systems. Springer

Science & Business Media.

• Open educational resources, representing alternative or

supplementary materials, shall be linked to the course

website.

Software used Software Modelling (e.g. Argo UML, Papyrus, StarUML), Java JDK,

Java Programming IDE (e. g. Eclipse, Intellij)

