

1/3

SYLLABUS
COURSE DESCRIPTION

COURSE TITLE Software Systems Architecture

COURSE CODE 76225

SCIENTIFIC SECTOR INF/01

DEGREE Bachelor in Computer Science

SEMESTER 2nd

YEAR 3rd

CREDITS 6

TOTAL LECTURING

HOURS
40

TOTAL LAB HOURS 20

ATTENDANCE

Attendance is not compulsory. Non-attending students have to contact the
lecturer at the start of the course to agree on the modalities of the

independent study. Exam modalities for non-attending students are the

same as for attending students.

PREREQUISITES -

COURSE PAGE https://ole.unibz.it/

SPECIFIC

EDUCATIONAL

OBJECTIVES

● Type of course: caratterizzanti
● Scientific area: discipline informatiche

● To understand the role played by software architecture in software

development lifecycle;
● To design software architecture based on patterns and best

practices;
● To obtain an overview of different software architecture styles and

the newest trends in software architecting;
● To evaluate and balance trade-offs of quality attributes on software

architecture; and
● To learn how to apply different software architecture styles to

develop high quality software.

LECTURER Eduardo Martins Guerra

SCIENTIFIC SECTOR

OF THE LECTURER

INF/01

https://ole.unibz.it/
https://www.unibz.it/it/faculties/computer-science/academic-staff/person/43879-eduardo-martins-guerra

2/3

TEACHING

LANGUAGE

English

OFFICE HOURS Thursday, 14:00-18:00, Office POS 1.13, eduardo.martinsguerra@unibz.it,
+39 375 6071913. Arrange by email.

TEACHING

ASSISTANT
-

OFFICE HOURS -

LIST OF TOPICS

COVERED
● Software and systems architecture principles
● Architecture process and activities: specification, validation

● Architectural description and modeling

● Stakeholders and viewpoints
● Quality considerations: security, performance, modifiability

● Patterns of systems architectures

TEACHING FORMAT Frontal lecture

LEARNING

OUTCOMES

Knowledge and understanding:

● To have a thorough knowledge of the main fundamentals techniques
and methods of software design, development and maintenance

● Know critical security aspects of information systems, the basic concepts
of security and techniques for the development of secure systems.

Applying knowledge and understanding:

● Be able to apply the own knowledge to the analysis, design,
development and testing of information systems which satisfy given

requirements
● Be able to solve typical problems in computer science based on

software engineering methodologies, such as the definition of

requirements, the analysis of possible methods for a solution, the
selection of the most appropriate methods and tools as well as their

application
Ability to make judgments

● Be able to collect and interpret useful data and to judge information
systems and their applicability

● Be able to work autonomously according to the own level of knowledge

and understanding
Communication skills

● Be able to structure and prepare scientific and technical documentation
● Be able to negotiate with a customer for the definition of the pre-

requisites and features of information systems

Ability to learn
● Have developed learning capabilities to pursue further studies with a

high degree of autonomy
● Be able to independently keep up to date with developments in the

most important areas of Computer Science

● Have acquired learning capabilities that enable to carry out project
activities in companies, public institutions or in distributed development

communities

mailto:eduardo.martinsguerra@unibz.it

3/3

ASSESSMENT The assessment is based on the lab assessment and the final exam. The lab

assessment is composed of a number of assignments. The assignments
motivate the students to study throughout the semester. The final exam

evaluates the students' understanding of the theoretical backgrounds and

the ability of solving problems.

The students will have the opportunity to perform optional activities that will
be evaluated according to the following criteria:

● Programming challenges, where the student would need to perform

a programming task;

● Tool or technology research, where the student would need to
search information about a tool or technology;

● Quests, where the student will be challenged to search for real
examples in local companies;

● Judgements, where students will judge a technology or technique

presenting both positive and negative points;
● Participation and performance in educational games and quizzes

performed in the classroom (just for attending students).

ASSESSMENT

LANGUAGE
English

EVALUATION

CRITERIA AND

CRITERIA FOR

AWARDING MARKS

For attending students, the grade is calculated based on (i) the lab
assessment (50% weight) and (ii) the final exam (50% weight). Optional

activities will be used for a score in a Gamification system. Based on students’

position on ranking, they might get some bonus in their final grade.

For non-attending students, if they can follow the delivery schedule for the
lab assessments, the grade is calculated the same way. Unless the grade is

calculated based only on the final exam that will include questions related to
the labs’ content.

REQUIRED

READINGS

Robert C. Martin. 2017. Clean Architecture: A Craftsman's Guide to

Software Structure and Design (1st ed.). Prentice Hall Press, Upper Saddle
River, NJ, USA.

Mark Richards. 2015. Software Architecture Patterns. O'Reilly Media, Inc..

SUPPLEMENTARY

READINGS

Len Bass, Paul Clements, and Rick Kazman. 2012. Software Architecture in

Practice (3rd ed.). Addison-Wesley Professional.

SOFTWARE USED Java JDK, Eclipse (or other Java IDE), other open-source tools.

