SYLLABUS
COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>Software Systems Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>76225</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
<td>INF/01</td>
</tr>
<tr>
<td>DEGREE</td>
<td>Bachelor in Computer Science</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2nd</td>
</tr>
<tr>
<td>YEAR</td>
<td>3rd</td>
</tr>
<tr>
<td>CREDITS</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
<td>20</td>
</tr>
<tr>
<td>ATTENDANCE</td>
<td>Attendance is not compulsory. Non-attending students have to contact the lecturer at the start of the course to agree on the modalities of the independent study. Exam modalities for non-attending students are the same as for attending students.</td>
</tr>
<tr>
<td>PREREQUISITES</td>
<td>-</td>
</tr>
<tr>
<td>COURSE PAGE</td>
<td>https://ole.unibz.it/</td>
</tr>
</tbody>
</table>

SPECIFIC EDUCATIONAL OBJECTIVES
- Type of course: caratterizzanti
- Scientific area: discipline informatiche
- To understand the role played by software architecture in software development lifecycle;
- To design software architecture based on patterns and best practices;
- To obtain an overview of different software architecture styles and the newest trends in software architecting;
- To evaluate and balance trade-offs of quality attributes on software architecture; and
- To learn how to apply different software architecture styles to develop high quality software.

LECTURER
Eduardo Martins Guerra

SCIENTIFIC SECTOR OF THE LECTURER
INF/01
<table>
<thead>
<tr>
<th>TEACHING LANGUAGE</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFFICE HOURS</td>
<td>Thursday, 14:00-18:00, Office POS 1.13, eduardo.martinsguerra@unibz.it, +39 375 6071913. Arrange by email.</td>
</tr>
<tr>
<td>TEACHING ASSISTANT</td>
<td>-</td>
</tr>
<tr>
<td>OFFICE HOURS</td>
<td>-</td>
</tr>
</tbody>
</table>
| **LIST OF TOPICS COVERED** | - Software and systems architecture principles
- Architecture process and activities: specification, validation
- Architectural description and modeling
- Stakeholders and viewpoints
- Quality considerations: security, performance, modifiability
- Patterns of systems architectures |
| **TEACHING FORMAT** | Frontal lecture |

| **LEARNING OUTCOMES** | Knowledge and understanding:
- To have a thorough knowledge of the main fundamentals techniques and methods of software design, development and maintenance
- Know critical security aspects of information systems, the basic concepts of security and techniques for the development of secure systems.
Applying knowledge and understanding:
- Be able to apply the own knowledge to the analysis, design, development and testing of information systems which satisfy given requirements
- Be able to solve typical problems in computer science based on software engineering methodologies, such as the definition of requirements, the analysis of possible methods for a solution, the selection of the most appropriate methods and tools as well as their application
Ability to make judgments
- Be able to collect and interpret useful data and to judge information systems and their applicability
- Be able to work autonomously according to the own level of knowledge and understanding
Communication skills
- Be able to structure and prepare scientific and technical documentation
- Be able to negotiate with a customer for the definition of the pre-requisites and features of information systems
Ability to learn
- Have developed learning capabilities to pursue further studies with a high degree of autonomy
- Be able to independently keep up to date with developments in the most important areas of Computer Science
- Have acquired learning capabilities that enable to carry out project activities in companies, public institutions or in distributed development communities |
ASSESSMENT

The assessment is based on the lab assessment and the final exam. The lab assessment is composed of a number of assignments. The assignments motivate the students to study throughout the semester. The final exam evaluates the students’ understanding of the theoretical backgrounds and the ability of solving problems.

The students will have the opportunity to perform optional activities that will be evaluated according to the following criteria:

- Programming challenges, where the student would need to perform a programming task;
- Tool or technology research, where the student would need to search information about a tool or technology;
- Quests, where the student will be challenged to search for real examples in local companies;
- Judgements, where students will judge a technology or technique presenting both positive and negative points;
- Participation and performance in educational games and quizzes performed in the classroom (just for attending students).

ASSESSMENT LANGUAGE

English

EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS

For attending students, the grade is calculated based on (i) the lab assessment (50% weight) and (ii) the final exam (50% weight). Optional activities will be used for a score in a Gamification system. Based on students’ position on ranking, they might get some bonus in their final grade.

For non-attending students, if they can follow the delivery schedule for the lab assessments, the grade is calculated the same way. Unless the grade is calculated based only on the final exam that will include questions related to the labs’ content.

REQUIRED READINGS

Mark Richards. 2015. Software Architecture Patterns. O'Reilly Media, Inc..

SUPPLEMENTARY READINGS

SOFTWARE USED

Java JDK, Eclipse (or other Java IDE), other open-source tools.