<table>
<thead>
<tr>
<th>SYLLABUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE TITLE</td>
</tr>
<tr>
<td>COURSE CODE</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
</tr>
<tr>
<td>DEGREE</td>
</tr>
<tr>
<td>SEMESTER</td>
</tr>
<tr>
<td>YEAR</td>
</tr>
<tr>
<td>CREDITS</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
</tr>
<tr>
<td>ATTENDANCE</td>
</tr>
<tr>
<td>PREREQUISITES</td>
</tr>
<tr>
<td>COURSE PAGE</td>
</tr>
</tbody>
</table>
| **SPECIFIC EDUCATIONAL OBJECTIVES** | Type of course: "di base"
Scientific area: "Formazione informatica di base"
The goal of this course is to give students an understanding of:
• the operating systems and their components/functionalities;
• the foundation of their programming in C;
• scheduling algorithms;
• processes and synchronization;
• memory management |
| **LECTURER** | Michele Segata |
| **SCIENTIFIC SECTOR OF THE LECTURER** | ING-INF/05 |
| **TEACHING LANGUAGE** | Italian |
OFFICE HOURS
Mondays, 9:00 – 11:00 upon mail appointment
Office POS 2.19, Faculty of CS, POS Building, Piazza Domenicani 3
Email: Michele.segata@unibz.it

TEACHING ASSISTANT
Artale Alessandro
Nicola Gigante

OFFICE HOURS
Alessandro Artale: Tuesday 15:00-18:00, upon email appointment. POS 2.03, Faculty of CS, Piazza Domenicani 3. artale@inf.unibz.it
Nicola Gigante: Tuesday 15:00-17:00, upon email appointment. POS 2.01, Faculty of CS, Piazza Domenicani 3. Nicola.gigante@unibz.it

LIST OF TOPICS COVERED
- Programming in C
- Scheduling and concurrency
- Processes and synchronization
- File systems and memory management
- Storage management
- Security and protection

TEACHING FORMAT
This course will be delivered through a combination of formal lectures and labs.

LEARNING OUTCOMES
Knowledge and understanding
- Know the fundamental principles of programming;
- Know the innovative aspects of the last generation of operating systems.

Applying knowledge and understanding
- Ability to develop programs to interact with microcontrollers and the operating systems of modern computers.

Making judgments
- Be able to work autonomously according to the own level of knowledge and understanding.

Communication skills
- Be able to use one of the three languages English, Italian and German, and be able to use technical terms and communication appropriately.

Ability to learn
- Have developed learning capabilities to pursue further studies with a high degree of autonomy;
- Be able to follow the fast technological evolution and to learn cutting edge IT technologies and innovative aspects of last generation information systems.

ASSESSMENT
Written exam: more specifically, the assessment consists of:
- theoretical questions and exercises (some exercises are related to what was explained during the Lab)

The aim of the written exam is to check the understanding of fundamental concepts and whether the candidates have also acquired detailed knowledge about operating systems. This is done through open questions about both the theoretical content and the lab exercises.

ASSESSMENT LANGUAGE
Italian
EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS

Marks are distributed as follows:

- theoretical questions (70%) and exercises related to what has been explained during the lab (30%).

The written exam questions will be evaluated in terms of correctness and clarity.

REQUIRED READINGS

- Che C serve? – Per iniziare a programmare – E. Burattini et al., 2016, Seconda Edizione
- Additional materials will be provided during the lessons and labs.

SUPPLEMENTARY READINGS

- Modern operating systems, Andrew S. Tanenbaum; 2008
- Operating Systems: internals and design principles, William Stallings; 2001
- C: How to Program, Seventh Edition, Paul Deitel, Harvey Deitel

SOFTWARE USED

- C/C++