

SYLLABUS COURSE DESCRIPTION

COURSE TITLE	Computer Systems Architecture
COURSE CODE	76240
SCIENTIFIC SECTOR	INF/01
DEGREE	Bachelor in Computer Science
SEMESTER	1st
YEAR	1st
CREDITS	6

TOTAL LECTURING HOURS	40
TOTAL LAB HOURS	20
ATTENDANCE	Attendance is not mandatory, but it is strongly recommended.
PREREQUISITES	
COURSE PAGE	https://ole.unibz.it/

SPECIFIC	Type of course: "di base" for L-31	
EDUCATIONAL	Scientific area: "Formazione informatica di base" for L-31	
OBJECTIVES	The goal of this course is to give students an understanding of:	
	 the architecture and organization of modern computers; the basic of the circuit logic involved in their construction; the foundation of their programming in assembly language. 	

LECTURER	Nicola Gigante
SCIENTIFIC SECTOR OF THE LECTURER	INF/01
TEACHING LANGUAGE	Italian
OFFICE HOURS	Tuesday 15:00-17:00 <u>nicola.gigante@unibz.it</u> Faculty of Computer Science, Piazza Domenicani 3, Office POS 2.01
TEACHING ASSISTANT	Nicola Gigante Enrico Franconi
OFFICE HOURS	Friday 10:00-12:00 enrico.franconi@unibz.it

Fakultät für Informatik **unibz** Facoltà di Scienze e Tecnologie informatiche Faculty of Computer Science

	Piazza Domenicani, 3 – Faculty of Computer Science, Piazza Domenicani 3, Office POS 3.06,
LIST OF TOPICS COVERED	 Computer systems organization: processors, primary memory, secondary memory, input/output and parallel architectures. Boolean algebra and gates: Boolean algebra, gates, implementation of Boolean functions, circuit equivalence. Digital circuits: arithmetic circuits, clocks, memory, CPU chips, buses. Microarchitecture: design of the microarchitecture level, performance optimization. Introduction to Instruction Set: data types, instruction formats, addressing, instruction types, flow of control. Introduction to Assembly language
TEACHING FORMAT	This course will be delivered through a combination of formal lectures and labs.

LEARNING	Knowledge and understanding
OUTCOMES	Understand the key principles, the structures and the organization
	of computer systems;
	Know the fundamental principles of programming.
	Applying knowledge and understanding
	Be able to develop programs to interact with microcontrollers and
	the operating system of modern computers.
	Making judgments
	 Be able to collect and interpret useful data and to judge
	information systems and their applicability;
	Be able to work autonomously according to the own level of
	knowledge and understanding.
	Communication skills
	Be able to use one of the three languages English, Italian and
	German, and be able to use technical terms and communication
	appropriately.
	Ability to learn
	Have developed learning capabilities to pursue further studies with
	some degree of autonomy;
	 Be able to follow the fast technological evolution and to learn cutting
	edge IT technologies and innovative aspects of last generation information systems.

ASSESSMENT	 Written exam: the assessment consists of: theoretical questions and exercises (some exercises can be related to what was explained during the Lab)
	The aim of the written exam is to check the understanding of fundamental concepts and whether the candidates have also acquired detailed knowledge about computer systems architecture. This is done through open questions about both the theoretical content and the lab exercises. The score related to each part contributes to the final grade. Specifically, to pass the exam, the students must be obtained 18/30.

Fakultät für Informatik **Unibz** Facoltà di Scienze e Tecnologie informatiche Faculty of Computer Science

ASSESSMENT LANGUAGE	Italian
EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS	Theoretical questions (70%) and exercises related to what has been explained during the lab (30%). The written exam questions will be evaluated in terms of correctness and clarity.
REQUIRED READINGS	 S. Tanenbaum, Todd Austin, Architettura degli elaboratori. Un approccio strutturale (sesta edizione) Additional material will be provided during the lessons and labs. <i>David.Gebhardi@unibz.it</i> Subject Librarian: David Gebhardi, <u>David.Gebhardi@unibz.it</u>
SUPPLEMENTARY	Computer Architecture 6th Edition

SUPPLEMENTARY READINGS	Computer Architecture 6th Edition A Quantitative Approach by John Hennessy David Patterson for modern parallel architectures
SOFTWARE USED	C/C++ or Mplab. <u>cs-tech@inf.unibz.it</u>