Syllabus
Course description

Course title
Statistics for the Public Sector
- M1 Introduction to statistical methods
- M2 Economic Statistics

Course code
27066 – other students code --- (M1) / --- (M2) Erasmus

Scientific sector
SECS-S/01 (M1) - SECS-S/03 (M2)

Degree
Master in Public Policies and Administration

Semester and academic year
1st semester 2020/2021 (M1) – 2nd semester 2020/2021 (M2)

Year
1

Credits
12 (6+6)

Modular
Yes

Total lecturing hours
72 (36 + 36)

Total lab hours
42 – M1: 20 (Preparatory Course) + 16; M2: 6

Total exercise hours
Suggested, but not required

Attendance
Students without a background in statistics are encouraged to attend the Preparatory Course in Statistics for the Public Sector scheduled at the beginning of the first semester, before Module M1 starts. At the end of the Preparatory Course, students are encouraged to take an exam aimed at checking the basic requirements to access Statistics for the Public Sector. Students receiving a “not passed” grade in the preparatory course will be put in contact with the main lecturer to bridge existing knowledge gaps. Students receiving a "pass with distinction" grade in the preparatory course will be awarded an additional point for the final mark in Statistics for the Public Sector.

Prerequisites

Course page
Course home page

Specific educational objectives
M1 Introduction to statistical methods
The course refers to the educational activities and belongs to the scientific area of Statistic.
Upon successful completion of the course students will be able to
- explore different types of data and examine their distribution through graphs and numerical measures;
represent, measure and interpret relationships between variables representing observed phenomena;
- understand sampling distributions and the implications for statistical inference; know the criteria for constructing good estimators of parameters; compute estimates of parameters from sample data; understand the philosophy and scientific principles underlying hypothesis testing; carry out hypothesis tests for a variety of statistical problems;
- understand and use descriptive and inferential statistics for single and multiple samples and in relation to response and explanatory variables;
- address basic statistical issues concerning concrete problems;
- perform basic statistical data analysis by means of the R software.

M2 Economic Statistics
This course refers to the educational activities and belongs to the scientific area of Statistic.
This course introduces students to the development, implementation, analysis, and reporting of empirical research projects. The focus of the course is on quantitative methods. Emphasis is placed on hands-on exercises in all stages of an empirical research project.

Upon completion of this course students should be able to:
- develop a data analysis plan based on specified research questions and hypotheses;
- collect primary data (via Web-based techniques);
- prepare the data for analysis;
- perform planned and exploratory quantitative analyses using the R statistical software;
- present and interpret the results of their analyses.

Module 1
M1 Introduction to statistical methods

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Francesca Marta Lilja Di Lascio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td>E510a</td>
</tr>
<tr>
<td>e-mail</td>
<td>Marta.DiLascio@unibz.it</td>
</tr>
<tr>
<td>Tel</td>
<td>0471/013285</td>
</tr>
<tr>
<td>Personal home page</td>
<td>[Link]</td>
</tr>
</tbody>
</table>

Scientific sector of the lecturer
SECS-S/01

Teaching language
English

Office hours
Please refer to the lecturer’s web page.

Lecturing assistants
Massimo Cannas
e-mail: Massimo.Cannas@unibz.it
[Link]

Maja Miletic
e-mail: Maja.Miletic@unibz.it
[Link]

Teaching assistant
Not foreseen.

Office hours
Please refer to the lecturer’s web page.

List of topics covered
Data exploration
Observations, types of data and scales of measurement numerical and qualitative variables; data visualization and exploration using graphical and numerical summaries.

Probability
Description of empirical phenomena under study through continuous and discrete random variables and their distribution. Basic characteristics of random variables and linear combination of variables. Central Limit theorem.

Statistical inference
Drawing conclusions about a population from a sample data via probability calculations. Random sampling, sampling distributions and estimation. Estimators and confidence intervals in one-sample and two-sample problems. Statistical decision-making and hypothesis testing for one-sample and two-sample problems. Test of independence.

Statistical Models

R software
Exploratory and inferential data analysis and data modeling in R with focus on real examples relevant for the Public Sector.

Teaching format
Online frontal lectures, online lectures with computers, frontal exercises in presence

<table>
<thead>
<tr>
<th>Module 2</th>
<th>M2 Economic Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer</td>
<td>Teresio Poggio</td>
</tr>
<tr>
<td>e-mail:</td>
<td>teresio.poggio@unibz.it</td>
</tr>
<tr>
<td>Personal home page</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific sector of the lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS/07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching language</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please refer to the official Timetable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturing assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damiano Marino Somenzi</td>
</tr>
<tr>
<td>e-mail: Damiano.Somenzi@unibz.it</td>
</tr>
<tr>
<td>Personal home page</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not foreseen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Office hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not foreseen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List of topics covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>How to develop an empirical research project</td>
</tr>
<tr>
<td>Fundamentals in design of scientific projects. Developing scientific research questions and hypotheses. Different research strategies and designs. Different types of data and their sources. Setting up a research project with a good literature review. Managing the research workflow: assure reproducibility and methodological transparency; gaining efficiency in the project. Data management and curation, in theory and practice. Presentation standards for scientific findings. Doing this, in practice, using R.</td>
</tr>
</tbody>
</table>
Design your data: introduction to survey methods

Overview of other designed and not designed data

Applied statistical models

Official statistics and economics
An overview from both the data producer and the data user perspectives.

Teaching format
Frontal lectures, exercises, lectures with computers

Learning outcomes
M1 Introduction to statistical methods

Knowledge and understanding: Knowledge of the basics of the inferential statistical theory, from estimation to hypothesis testing. Knowledge of the procedures for simple and multiple linear statistical modelling. Ability to understand basic R code and implement statistical methods in the R computing environment.

Applying knowledge and understanding: Ability to perform basic statistical analyses of socio-economic data through descriptive and the inferential statistical tools. Ability to apply statistical techniques using a statistical software.

Making judgments: on the appropriateness of statistical tools to analyse data and on the results of a statistical analysis of concrete cases.

Communication skills: to present in a consistent and precise way the results obtained from a statistical analysis of observed data.
Learning skills: Ability to i) understand the logic of statistical reasoning, ii) address statistical issues concerning concrete problems, and iii) interpret the results of statistical data analysis.

M2 Economic Statistics

Knowledge and understanding: Basics research strategies, designs and methods; Basics of survey methodology and sampling. Other types of data: opportunities and methodological challenges. The basics of the generalized linear model. Applied multiple regression for continuous and binary dependent variables.

Applying knowledge and understanding: Ability to find existing statistical data relevant to given research topics; Basic abilities to design own data collection projects and to draft a simple questionnaire. Ability to program a survey and its questionnaire with the LimeSurvey platform. Basic abilities in building a statistical model. Basic abilities in the use of R software for data management, analysis and reporting, assuring reproducibility of results.

Making judgments: Ability to choose appropriate research strategies and designs to address a given research question. Ability to assess data quality in terms of both measurement and generalizability issues.

Communication skills: Ability to present in a consistent and precise way the results obtained from the statistical analysis. Ability to write a technical report on specific economic issues by analysing data

Learning skills: Ability to link theory to empirical research and to translate research hypothesis into empirical studies. Ability to understand and analyse the economic data from a quantitative perspective.

Assessment

M1 Introduction to statistical methods
Written exam on a case study: students will have to solve theoretical, practical and computational issues concerning a given concrete problem.
The assessment method indicated is valid for both attending and non-attending students.

M2 Economic Statistics
DEFAULT ASSESSMENT (ALL STUDENTS):
a. 15% Assignment 1 (Questions design, individual assignment), delivered at own pace but at least one week
before the exam;*
b. 15% Assignment 2 (Programming a short questionnaire on LimeSurvey – individual assignment), delivered at own pace but at least one week before the exam;*
c. 35% Assignment 3 / Final project (data management, analysis and reporting exercise – individual assignment), delivered at own pace but at least one week before the exam;*
d. 35% Final test: 40 minutes. A set of multiple choice questions + a few short open-ended questions/exercise (open book).

* Students must contact the instructor no later than one month before the exam, for the assignments’ arrangements.

ASSESSMENT OPTION FOR ATTENDING STUDENTS:
a. 15% Assignment 1 (Questions design, in two steps – group assignment)
b. 15% Assignment 2 (Programming a short questionnaire on LimeSurvey – individual assignment)
c. 30% Assignment 3 / Final project (data management, analysis and reporting exercise – individual assignment)
d. 30% Final test: 40 minutes. A set of multiple choice questions + a few short open-ended questions/exercise (open book).
e. 10% based on participation (including timely delivering of the three graded assignments).

English

M1 Introduction to statistical methods
To pass the M1 module exam students must obtain a positive evaluation on the written exam. The following aspects are relevant for the written exam: correctness and clarity of answers, ability to interpret R outputs in the context of real data and ability to write correct R code.

M2 Economic Statistics
All students must reach sufficiency (marks >= 18) in both the (c) and (d) steps above, in order to pass the M2 exam. Failing in any of these two steps would mean not passing the module exam, irrespective of the grades attained in the remaining assessment steps.

Correctness and clarity of the assignments delivered (assignments 1, 2, 3) and of the answers provided in the final exam, ability to write a few questions for a survey in an informed approach (assignment 1), ability to program a short questionnaire in LimeSurvey (assignment 2), ability to write correct R code (assignment 3) and to interpret R outputs (assignment 3 and final exam) are relevant for the Module 2 assessment.
Overall course (M1+M2) assessment
Passing both the Module 1 and the Module 2 exam is a prerequisite for passing the (whole) course exam. The final marks for the whole course (M1 and M2) will be computed as the average of the two modules marks.
Pass with distinction in the Preparatory class: up to 1 point added.

Required readings

M1 Introduction to statistical methods
- Lecture notes and R code of the labs will be provided.

M2 Economic Statistics

Supplementary readings

M1 Introduction to statistical methods
M2 Economic Statistics
A list of – non mandatory - suggested readings and further resources will be provided during the course.