Syllabus
Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Introduction to printing technologies and flexible components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td></td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF01</td>
</tr>
<tr>
<td>Degree</td>
<td>PhD in Advanced Systems Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Academic year</td>
<td>2020/2021</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>30</td>
</tr>
<tr>
<td>Attendance</td>
<td>Preferred</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td>Course page</td>
<td>None</td>
</tr>
<tr>
<td>Specific educational objectives</td>
<td>The course is a specialized course in the interdisciplinary</td>
</tr>
<tr>
<td></td>
<td>area of physics, material science, chemistry, electronics,</td>
</tr>
<tr>
<td></td>
<td>and biotechnology, addressing the implementation of flexible</td>
</tr>
<tr>
<td></td>
<td>electronics technologies.</td>
</tr>
<tr>
<td></td>
<td>It is designed to acquire knowledge in flexible electronics</td>
</tr>
<tr>
<td></td>
<td>device technology, from materials, processes, devices to</td>
</tr>
<tr>
<td></td>
<td>systems and applications: state of the art and current status</td>
</tr>
<tr>
<td></td>
<td>on commercialization.</td>
</tr>
<tr>
<td></td>
<td>The specific educational objectives are to:</td>
</tr>
<tr>
<td></td>
<td>- Acquire basic understanding and knowledge of printing and</td>
</tr>
<tr>
<td></td>
<td>microfabrication technologies.</td>
</tr>
<tr>
<td></td>
<td>- Acquire basic understanding and knowledge of device</td>
</tr>
<tr>
<td></td>
<td>characterization methods.</td>
</tr>
<tr>
<td></td>
<td>- Acquire “practical” experience with different fabrication</td>
</tr>
<tr>
<td></td>
<td>and characterization techniques.</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Luisa Petti</td>
</tr>
<tr>
<td>Scientific sector of the</td>
<td>ING-INF01</td>
</tr>
<tr>
<td>lecturer</td>
<td></td>
</tr>
<tr>
<td>Teaching language</td>
<td>English</td>
</tr>
<tr>
<td>Office hours</td>
<td>From Monday to Friday, on appointment</td>
</tr>
<tr>
<td>List of topics covered</td>
<td>1. Flexible electronics: general introduction</td>
</tr>
<tr>
<td></td>
<td>- Historical background</td>
</tr>
<tr>
<td></td>
<td>- Materials, devices, systems, applications</td>
</tr>
<tr>
<td></td>
<td>- Fabrication techniques</td>
</tr>
<tr>
<td></td>
<td>- Unique aspects, status in the field and trends</td>
</tr>
</tbody>
</table>
2. Thin-film microfabrication techniques
 - Basics and fundamentals
 - Deposition and structuring methods

3. Printing techniques
 - Basics and fundamentals
 - Fluid formation and rheology for printing
 - Inks and printing techniques
 - Additional coating and structuring methods

4. Alternative fabrication techniques
 - Laser processing
 - Additive manufacturing

5. Thin-film transistors and circuits
 - Thin film transistors (TFTs)
 - Device operation, materials, and structures
 - Device characterization and performance
 - UNIBZ's case study: sub-micrometer Indium-Gallium-Zinc-Oxide TFTs and spray-coated carbon nanotube TFTs
 - Thin film circuits
 - From transistors to circuits
 - Other passive and active thin-film components
 - Digital and analog circuits

6. Sensors and biosensors
 - Sensors
 - Principles and fundamentals
 - Examples of flexible physical, chemical and optical sensors
 - Biosensors
 - Principles and fundamentals
 - Examples of flexible biosensors

7. Actuators
 - Principles and fundamentals
 - Examples of flexible optical and thermal actuators

8. Energy harvesting and storage components
 - Energy harvesters
 - Principles and fundamentals
 - Examples of flexible energy harvesters
 - Storage components
 - Principles and fundamentals
9. **Further processing components**
 - Interconnections, antennas, memories

10. **Integrated Systems**
 - System integration strategies
 - Examples of fully flexible and hybrid systems

11. **Applications**
 - Examples applications from academia and industry
 - Roadmapping

Teaching format

Digital format (provided on teams) divided in:

- **Theoretical lectures using:**
 - Slides
 - Videos (e.g., conference presentations, laboratory tutorials)

- **Practical exercises:**
 - Use of softwares (e.g. Origin, Corel) for data analysis and plotting.

- **Projects & assignments:**
 - Informal discussions on presentations and scientific papers
 - Preparation of short papers based on literature review

Learning outcomes

Knowledge and understanding: theoretical know-how on printing, microfabrication, and characterization technologies for electronic components.

Applying knowledge and understanding: practical know-how on printing, microfabrication, and characterization technologies for electronic components.

Making judgments: Capability of identifying the most suitable fabrication and characterization methods to realize specific electronic devices for a given targeted application.

Communication skills: ability to give a specialized technical presentation supported by power-point slides.

Learning skills: performing a literature review on a given topic; extracting the most valuable information and embedding it in a presentation.

Assessment

A project work developed by the student will be assessed:
<table>
<thead>
<tr>
<th>Presentation and discussion of a topic related to the contents of the course agreed between lecturer and students.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment language</td>
</tr>
<tr>
<td>Evaluation criteria and criteria for awarding marks</td>
</tr>
<tr>
<td>Required readings</td>
</tr>
<tr>
<td>Supplementary readings</td>
</tr>
</tbody>
</table>