Course Title: Enterprise Architectures
Course Code: 73013
Scientific Sector: INF/01
Degree: Master in Computational Data Science (LM-18)
Semester: 1
Year: 1
Credits: 6
Modular: No
Total Lecture Hours: 40
Total Lab Hours: 20
Attendance: Mandatory
Prerequisites: --
Course Page: https://ole.unibz.it/

Specific Educational Objectives

The course belongs to the type "caratterizzanti – discipline informatiche" in the curriculum "Data Management". This course is designed for acquiring contemporary professional skills and knowledge. After successful completion the student should have a well-founded, basic understanding of what is involved to successfully model and analyze complex aspects of organization that provide a context for the structuring and interpretation of Enterprise Data. The course will not teach mastery of specific tools, but educate on best practices and processes. The course will be taught from a perspective that is strongly based on modeling. For that, the students will learn to produce, read and reason with architecture models ranging from Strategy Models (Business Models and Goal Models), passing by Service and Business Process Models, as well as models of IT services and infrastructures that support the business layer.

Lecturer: Giancarlo Guizzardi
Contact: Piazza Domenicani 3, Faculty of Computer Science, Office 3.06, ggguizzardi@unibz.it, 3662896895
Scientific Sector of Lecturer: INF/01
Teaching Language: English
Office Hours: To be arranged beforehand by email.
Lecturing Assistant (if any): Panagiotis Symeonidis
Contact LA: Piazza Domenicani 3, Faculty of Computer Science Office 2.11, pymeonidis@unibz.it, 0039 0471016020
Office Hours LA: To be arranged beforehand by email
List of Topics

- Business strategy and goal modelling
- Enterprise ontologies
- Relating data modelling and process modelling in organizational contexts
- Service modelling, management and governance
Teaching format
- Frontal lectures, modeling exercises, projects in groups.

Learning outcomes

Knowledge and understanding:
- D1.1 - Knowledge of the key concepts and technologies of data science disciplines
- D1.5 - Knowledge of principles and models for the representation, management and processing of complex and heterogeneous data
- D1.10 - Knowledge of languages, methodologies and architectures for modelling data, processes and organisations

Applying knowledge and understanding:
- D2.1 - Practical application and evaluation of tools and techniques in the field of data science
- D2.10 - Application of languages, tools, and methods for the design of information systems and their corresponding software applications for data, process, and organization management

Making judgments
- D3.2 - Ability to autonomously select the documentation (in the form of books, web, magazines, etc.) needed to keep up to date in a given sector

Communication skills
- D4.1 - Ability to use English at an advanced level with particular reference to disciplinary terminology
- D4.3 - Ability to structure and draft scientific and technical documentation

Learning skills
- D5.1 - Ability to autonomously extend the knowledge acquired during the study course
- D5.3 - Ability to deal with problems in a systematic and creative way and to appropriate problem solving techniques

Assessment

The assessment of the course consists of two parts:
- A project assignment: for the project assignment, a written project report including the produced models must be handed in on the pre-announced date and time.
- An oral exam with verification and comprehension questions.

Assessment language
- English

Assessment Typology
- Monocratic

Evaluation criteria and criteria for awarding marks
- 70% collective project assignment, 30% individual oral exam; ALL parts must be positive!
- Oral exam: creativity, skills in critical thinking; ability to summarize in own words and concisely present (intermediate and final) results; clarity of answers, mastery of language, ability to clearly explain,
summarize, evaluate, and establish relationships between topics; demonstrate a deep understanding of the subjects covered during the course and be able to describe them precisely and clearly.

Relevant for collective project assignment: ability to work in a team, creativity, introduce oneself into new topics and research literature on your own to create a deep understanding; demonstrate a deep understanding of the subjects covered during the course and be able to describe them precisely and clearly.

<table>
<thead>
<tr>
<th>Required readings</th>
<th>There are a number of supplementary readings for the course. One which is used throughout the course very consistently is the following:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Supplementary readings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Archimate Specifications, The Open Group, available online a</td>
</tr>
<tr>
<td></td>
<td>- Maria-Eugenia Iacob, Henk Jonkers, Dick Quartel, Henry Franken, Harmen van den Berg, Delivering Business Outcome with TOGAF and Archimate</td>
</tr>
<tr>
<td></td>
<td>- Articles on Specific Topics of the Course</td>
</tr>
</tbody>
</table>

| Software used | Archimate Modeling Tool. Examples include ARCHI or the Draw.IO Archimate Template. The tool is available online and can be used free of charge by the students. |