

SYLLABUS COURSE DESCRIPTION

COURSE TITLE	Artificial Intelligence
COURSE CODE	76212
SCIENTIFIC SECTOR	INF/01
DEGREE	Bachelor in Computer Science
SEMESTER	2nd
YEAR	2nd
CREDITS	6

TOTAL LECTURING HOURS	40
TOTAL LAB HOURS	20
ATTENDANCE	Attendance is not compulsory; non-attending students may contact the lecturer at the start of the course to get support on the modalities of the independent study
PREREQUISITES	There are no formal prerequisites in terms of courses to attend. Knowledge and skills in programming paradigms, discrete mathematics and logic, and algebra are strongly recommended.
COURSE PAGE	https://ole.unibz.it/

SPECIFIC EDUCATIONAL OBJECTIVES

- Type of course: "caratterizzanti"
- Scientific area: "discipline informatiche"

This course is about the study of the design of intelligent computational agents, and the emergence of Artificial Intelligence as an integrated science. The focus is on an intelligent agent acting in an environment. The course starts with simple agents acting in simple, static environments and gradually increases the power of the agents to cope with more challenging worlds. The course explores several dimensions of complexity introducing, gradually and with modularity, what makes building intelligent agents challenging. This is made concrete by repeatedly illustrating the ideas with different agent tasks, such as a delivery robot and a diagnostic assistant: the science of Artificial Intelligence is developed together with its engineering applications. The agent we want the student to envision is a hierarchically designed agent that acts intelligently in a stochastic environment that it can only partially observe - one that reasons about individuals and relationships among them, has complex preferences, learns while acting, takes into account other agents, and acts appropriately given its own computational limitations.

LECTURER	Enrico Franconi
SCIENTIFIC SECTOR OF THE LECTURER	INF/01
TEACHING LANGUAGE	English
OFFICE HOURS	Anytime in office POS 3.06, by previous appointment by email to the lecturer franconi@inf.unibz.it
TEACHING ASSISTANT	same as lecturer
OFFICE HOURS	-
LIST OF TOPICS COVERED	 Artificial Intelligence and Agents Searching for Solutions Reasoning with Constraints Propositions and inference Planning with Certainty Multiagent Systems and Games
TEACHING FORMAT	Frontal lectures, exercises in lab, assignments, case study analysis

LEARNING	Knowledge and understanding
OUTCOMES	 know the principles of artificial intelligence and potentials and limits of
	intelligent systems in various application domains;
	Applying knowledge and understanding
	 be able to adopt programming techniques of artificial intelligence to solve problems of computer science;
	Ability to make judgments
	 be able to collect useful data and to judge information systems and their applicability.
	 be able to work autonomously according to the own level of knowledge.
	Communication skills
	 be able to explain a project activity or a scientific study, also to non- experts;
	Ability to learn
	 be able to learn cutting edge IT technologies and their strengths and limitations.

ASSESSMENT	Written work: written exam with verification questions, transfer of knowledge questions, and exercises. The written exam will be based on problem solving activities and on a deep understanding of the basic principles of the technologies studied during the course.
ASSESSMENT LANGUAGE	English
EVALUATION CRITERIA AND	Written Exam (100%).

CRITERIA FOR AWARDING MARKS	The written exam is evaluated based on correctness of answers, clarity of answers, ability to summarize, evaluate, and establish relationships between topics, skills in critical thinking, ability to summarize in own words.
REQUIRED READINGS	David Poole and Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents (2nd Edition). Cambridge University Press, 2017. ISBN: 9781107195394 copies available at the Bozen-Bolzano University Library 15-Textbook Collection <i>ST 300 P822(.11)</i>
SUPPLEMENTARY READINGS	-
SOFTWARE USED	Available from the course web page.