

Syllabus Course description

Electrical Systems Engineering	
45500	
ING IND/33	
LM – 30	
1	
I	
2020-2021	
6	
No	

Total lecturing hours	60
Total lab hours	0
Total exercise hours	0
Attendance	Not mandatory
Prerequisites	Mathematical analysis, Physics 2, Electrotechnics
Course page	

Specific educational	
objectives	

Lecturer	Dr Emanuele Fornasiero	
	emanuele.fornasiero@unibz.it	
Scientific sector of the	ING-IND/32	
lecturer		
Teaching language	English	
Office hours	Appointment by email	
Teaching assistant (if any)		
Office hours		
List of topics covered	1. Definitions and generality	
	2. Sinusoidal quantities	
	3. Three-phase systems	
	4. Networks structure	
	5. Sizing of continuous and alternating power lines	
	6. Transformers	
	7. Non-symmetrical electrical networks	
	8. Fault analysis	
	9. Electrical safety	
	Initially the course refers to elements of general	
	electrotechnics. Then the symbolic	
	notation is introduced for the study of sinusoidal networks:	
	complex operators;	
	behavior of the bipoles in sinusoidal and three-phase	

systems.
The emphasis is on electrical installations; structure of the
Italian electricity system;
structure of electrical networks; generation, transmission, distribution and final use
of electricity. Furthermore, the criteria for the design of
DC power lines will be
examined; cantilevered power lines; sizing of lines with
constant section or constant
current density.
The main constructive characteristics of single-phase and
three-phase transformers
are therefore examined; magnetic cores and electric coils; real transformer; losses
due to the Joule effect and iron losses due to hysteresis and eddy currents.
The theory of symmetrical components for the
understanding and analysis of non symmetrical
three-phase electrical faults is addressed.
Finally, the effects of electricity on the human body are
examined; the components
of a grounding system and protection against indirect
electrical contacts.

Teaching format

Class lectures

Learning outcomes (ILOs)

The learning outcomes need to refer to the Dublin Descriptors:

Knowledge and understanding

 Knowledge of the basics related to the distribution of electricity in medium and low voltage, criteria to design electric lines, basics on transformers, line faults and electric safety.

Applying knowledge and understanding

2. Students will be able to approach the design of direct current and alternating current lines, with a basic understanding on how to select the proper circuit protection. Recognize the different voltage level associated with electricity transmission and evaluate the main issues related to the distribution of electricity. A basic knowledge of CEI regulations is also provided.

Making judgements

3. Students will be able to interpret design choices on existing systems, and to identify and investigate critical aspects related with them.

Communication skills
4. Students will learn the main technical terms related to the topic.
Ability to learn
5. The variety of topics of the course allow the students to have basic knowledge of many subjects, giving them the opportunity to easily deepen specific topics.

Assessment Assessment language	Formative assessment			
	Form	Leng	yth /duration	ILOs assessed
	Summative assessment Oral examination with two or three general questions			
	Form	%	Length /duration	ILOs assessed
	Oral examination, two or three questions	100	About ½ hour	all
	English/italian			
Evaluation criteria and criteria for awarding marks	A single final m of two question Evaluation base	s. Both ed on k	be calculated avera marks must be at l nowledge of the sul ween the various co	east 18. bject and ability

Required readings	Lessons and slides of the course
Supplementary readings	- M. Fauri, .F. Gnesotto, G. Marchesi, A. Maschio:
	"Lezioni di Elettrotecnica - vol.1 Elettrotecnica generale",
	Società editrice Esculapio, Bologna, 1999.
	- M. Fauri, .F. Gnesotto, G. Marchesi, A. Maschio:
	"Lezioni di Elettrotecnica - vol.2 Applicazioni elettriche",
	Società editrice Esculapio, Bologna, 2002.
	- L. Fellin, R. Benato, Impianti elettrici, Utet Scienze
	Tecniche, 2011