Syllabus
Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Fundamentals of Machinery and Oleodynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42151</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-IND/08</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial and Mechanical Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>1st</td>
</tr>
<tr>
<td>Year</td>
<td>III</td>
</tr>
<tr>
<td>Credits</td>
<td>8</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>50</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>0</td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>30</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not compulsory, but strongly advisable</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Course of Fluid Mechanics</td>
</tr>
<tr>
<td>Course page</td>
<td></td>
</tr>
</tbody>
</table>

Specific educational objectives
The Fundamentals of Machinery and Oleodynamic course is a core teaching in the context of the degree in Industrial and Mechanical Engineering and specifically it deals with the operative and design aspects of fluid machines that are used for the conversion of energy (production and use).

The course consists of 50 hours of frontal lectures and 30 hours of exercises. The lectures introduce the fundamental concepts and the working principles of the fluid machines using both compressible and non-compressible fluids. The main mechanical and energy conservation principles and equations will be described and applied to fluid machines. Specific procedures for the fluid-dynamic design of fluid machines will be presented.

In particular, the following topics will be addressed:
- constructive aspects, behavior of fluids in the fluid machines components, blades and duct design,
- work exchange mechanisms and thermo-fluid-dynamic transformations in fluid machines, evaluation of the performance.

The exercises consist in developing the design procedures of fluid machines and the introduction of such machines in plants and circuits with the aim to give the students a deeper comprehension and understanding of the topics.

Lecturer
Massimiliano Renzi, K1.12, Massimiliano.renzi@unibz.it
0471- 017816.
Briola Stefano, sbriola@unibz.it

Scientific sector of the ING-IND/08
List of topics covered

1. Introduction and reference of fluid dynamics: definition of fluid machines; basics of aerodynamics of airfoils and hydrofoils for turbo-machines; conservation equations for real flows in fluid machines’ systems and their application to thermal and hydraulic machines; velocity triangles and Eulerian work; fluid transformations in turbomachinery vanes; similarity laws applied to fluid machines;
2. Centrifugal, mixed flow and axial pumps: flow rate and head; efficiency; pump impeller design; cavitation; NPSH; coupling with hydraulic circuits
3. Hydraulic turbines: Pelton, Francis, Kaplan; constructive aspects; specific speed; turbine wheel or impeller design; cavitation;
4. Gas and vapour turbines: nozzles and diffusers; isentropic and polytropic efficiencies; turbine blades; impulse and reaction turbine; one-dimensional analysis of the flow; design process and calculation of stage performance
5. Alternative and rotary gas compressors: working principles and working cycle; basic design solutions and performance

Teaching format

The course consists of classroom lectures in which the topics are presented by the lecturer. Design exercises are also foreseen to supply practical examples of the application of the theoretical topics. Course topics will be presented through presentations. Teaching material will be given to the students; additional material will be provided by the Professor.

Learning outcomes

Intended Learning Outcomes (ILO)

Knowledge and understanding
Through the application of the principles of thermo-fluid-dynamics to fluid machines, students should be able:
1. To know and understand the fundamental mechanical components used in the fluid machines and their operative function
2. To know and understand the fluid-dynamics of the fluid machines, the design of the fluid-machines components and the introduction of the fluid machines within the industrial and civil plants and devices

Applying knowledge and understanding
3. to apply the fluid-dynamic laws to the design of thermal and hydraulic machines’ components
4. to apply the studied fluid-machines to industrial and civil plants and devices

Making judgements
5. to make autonomous judgements in the choice of the design solutions, of the suitable machines and of the plant solutions in relation to their applications

Communication skills
6. to correctly and properly present the concepts acquired in the course both in written and oral form
7. to use the proper technical terms to describe the design solutions of the fluid machines

Ability to learn
8. to acquire lifelong learning skills in the field of fluid machines by applying the methods and the concepts acquired in the course

Assessment

Examination of the course is conducted via a written exam. The written exam consists of two parts: i) an exercise on the basic design of one of fluid machines presented during the course to assess the ability of the student to apply the topics of the course in practical applications, the comprehension of the theoretical concepts and the ability to make judgments; ii) at least two open written questions to assess the knowledge and understanding of the course topics, the theoretical aspects, as well as the ability to transfer these skills to case studies of fluid machines.

The student can choose to have an additional optional oral exam to further assess his/her preparation.

Formative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>In class exercises</td>
<td>30 X 60 minutes</td>
<td>2, 3, 4, 5</td>
</tr>
</tbody>
</table>

Summative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>50%</td>
<td>1 exercise (1.5 hours)</td>
<td>2, 3, 4, 5</td>
</tr>
<tr>
<td>– exercises</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Written exam</td>
<td>50%</td>
<td>2 open-ended questions (1)</td>
<td>1, 2, 6, 7</td>
</tr>
<tr>
<td>– theory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment language: English

Evaluation criteria and criteria for awarding marks:

- Students regularly enrolled at the 3rd year of the Bachelor in Industrial and Mechanical Engineering are eligible for the attendance of the lessons and the exam. Other exceptional cases have to be discussed with the Professor.

Written exam - exercise
The written exam assesses the ability of the student to apply the topics of the course in a practical dimensioning exercise and the ability to make judgments. The following criteria will be taken into account:
- Correctness of the design choices
- Correctness of the dimensioning procedure
- Correctness of the numerical solution
- Appropriate use of measurement units

Written exam - theory (open-end question)
The written exam on the theory assesses the knowledge and understanding of the course topics, the knowledge of the fluid-dynamic behavior of compressible and incompressible fluids in the components of the fluid machines, as well as the ability to transfer these skills to case studies and to make judgment. The following criteria will be taken into account:
- Theoretical knowledge
- Ability to provide examples/applications of the theoretical concepts
- Communication skills and master of the technical language

Oral exam (optional)
The following criteria will be taken into account:
- Theoretical knowledge
- Ability to provide examples/applications of the theoretical concepts
- Communication skills and master of the technical language

The exam will be weighted as follows: written (50%), oral (50%). It will not be possible to pass the exam if the exercise or the questions will not have a sufficient mark singularly.

Required readings:
Slides presented during the lecture (available in the
reserve collection); additional material supplied by the lecturer (typically available in the reserve collection).

| Supplementary readings | • S. Sandrolini, G. Naldi, “Macchine, Vol. 1: Fluidodinamica e termodinamica delle turbomacchine”, Pitagora Editrice
• R. Della Volpe, Macchine, Editore Liguori, Napoli
• G. Minelli, “Macchine idrauliche”, Pitagora Editrice
• R. Della Volpe, Esercizi di macchine, Editore Liguori, Napoli |