

## Syllabus Course description

| Course title      | Advanced Methods for Fluid Machine Design         |
|-------------------|---------------------------------------------------|
| Course code       | 42157                                             |
| Scientific sector | ING-IND/08                                        |
| Degree            | Bachelor in Industrial and Mechanical Engineering |
| Semester          |                                                   |
| Year              |                                                   |
| Academic year     | 2019-20                                           |
| Credits           | 6                                                 |
| Modular           | No                                                |

| Total lecturing hours | 36                                     |
|-----------------------|----------------------------------------|
| Total lab hours       |                                        |
| Total exercise hours  | 24                                     |
| Attendance            | Not compulsory, but strongly suggested |
| Prerequisites         | Fundamentals of Fluid Machines course  |
| Course page           |                                        |

| Specific educational | The course of Advanced Methods for Fluid Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| objectives           | Design is a compulsory course for the curriculum in<br>Energy in the Bachelor of Industrial and Mechanical<br>Engineering and it is an elective course for all the other<br>curricula. The course is in the scientific sector of Fluid<br>Machines and it consists of two modules for a total of 36<br>hours of frontal lectures and 24 hours of practical<br>exercises.                                                                                                                                                                         |
|                      | The course aims to introduce students to the use of the<br>numerical analysis for the study of complex fluid flow-<br>fields that can be found in turbomachinery and in<br>propulsion systems, making use of the Finite Volumes<br>Methodology (FVM).                                                                                                                                                                                                                                                                                            |
|                      | <ul> <li>Specific educational objectives:</li> <li>understanding the theoretical aspects underlying computational fluid dynamics (CFD);</li> <li>comprehension of the numerical algorithms for the discrete resolution of compressible and incompressible flows;</li> <li>understanding the basic principles and approaches to modeling turbulence;</li> <li>acquire the fundamental knowledge for a correct choice of numerical models, boundary conditions and interfaces</li> <li>acquire the fundamental knowledge for the use of</li> </ul> |
|                      | commercial calculation codes for geometric modeling,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



Freie Universität Bozen unibz Libera Università di Bolzano Università Liedia de Bulsan

| grid generation, fluid dynamic resolution or analysis of results |
|------------------------------------------------------------------|
|                                                                  |

| Lecturer                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific sector of the<br>lecturer |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Teaching language                    | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Office hours                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Teaching assistant (if any)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| List of topics covered               | <ul> <li>The course aims to provide an introduction to the use of numerical resolution tools for fluid-dynamics problems in Fluid Machines.</li> <li>A first theoretical part will provide the basic knowledge on the numerical solution of ordinary differential equations and partial differential equations. The second part will deal with the fundamental equations of fluid dynamics and the numerical methods used in commercial fluid-dynamics calculation software. Spatial Discretization: Solution principles of fluid dynamics equations; Finite Volumes Method (FVM).</li> <li>The turbulence modelling and the boundary layer modelling are briefly presented.</li> <li>Specific attention will be focused on the application of the numerical codes to turbomachines.</li> </ul> |
| Teaching format                      | The module has a duration of 30 hours, 18 hours of<br>frontal teaching and 12 hours of exercises. The lectures<br>on the theory part are presented at the blackboard and<br>using slides. The exercises consist in the guided numerical<br>resolution of differential equations and of more complex<br>problems of numerical fluid dynamics applied to<br>turbomachines. The exercises will be carried out with PCs<br>using numerical commercial software.                                                                                                                                                                                                                                                                                                                                     |

| Lecturer                    |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific sector of the    |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lecturer                    |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Teaching language           |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Office hours                |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Teaching assistant (if any) |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| List of topics covered      | <ul><li>The module aims to provide an introduction to the use of numerical resolution tools for fluid-dynamics problems in Fluid Machines.</li><li>A significant part of the course foresees practical exercises involving the use of computer software for grid generation and numerical resolution. Specific attention will be focused on the application of the numerical codes to volumetric machines.</li></ul> |
| Teaching format             | The module has a duration of 30 hours, 18 hours of<br>frontal teaching and 12 hours of exercises. The lectures<br>on the theory part are presented at the blackboard and<br>using slides. The exercises consist in the guided numerical                                                                                                                                                                              |



|                   | resolution of differential equations and of more complex<br>problems of numerical fluid dynamics applied to industrial<br>applications. The exercises will be carried out with PCs<br>using numerical commercial software.                                                                                                                                                                            |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning outcomes | The learning outcomes referred to the Dublin Descriptors:<br><b>Knowledge and understanding</b><br>The course allows the students to acquire advanced<br>knowledge on the main numerical methods for the<br>advanced study of the fluid-dynamics in Fluid Machines<br>(1). The topics discussed will provide the basis for a                                                                          |
|                   | thorough understanding of the main physical phenomena,<br>approaches for the modeling (2), comprehension of the<br>numerical methods (3) with specific focus on<br>turbomachines.                                                                                                                                                                                                                     |
|                   | <b>Applying knowledge and understanding</b><br>The student will be able to apply the knowledge during<br>the exercises where the studied models will be used to<br>assess specific practical problems (4). They will also apply<br>the theoretical contents by using commercial calculation<br>codes for geometric modeling, grid generation, fluid<br>dynamic resolution or analysis of results (5). |
|                   | Making judgments<br>The student should acquire the ability to evaluate the best<br>choice of numerical models and boundary conditions<br>applied to important practical cases in industrial flows and<br>turbomachines (6). The student should also be able to<br>discuss and interpret the numerical results and correlate<br>them with the physical problem (7).                                    |
|                   | <b>Communication skills</b><br>The student should acquire the proper technical language<br>(8) and should be able to present the design choices, the<br>numerical results with a critical approach (9).                                                                                                                                                                                               |
|                   | <b>Learning skills</b><br>The student should acquire lifelong learning skills through<br>the possession of the tools for the numerical modeling<br>and to update knowledge (10). Moreover, the student<br>should be able to get the required data and information<br>from databases, technical and scientific papers (11).                                                                            |
| Assessment        | The final exam consists in an oral exam on the theoretical<br>concepts and the discussion of a project work in which<br>the concepts of the course are applied to an industrial<br>flow or a turbomachine or a volumetric machine. Students<br>are expected to prepare a report on the case study; the<br>discussion of the project work and its presentation can be                                  |



|                                                        | made in group project).                                             | of stude                         | ents (maximum 2 stu                            | idents per                     |  |
|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------|--|
|                                                        | Formative assessment                                                |                                  |                                                |                                |  |
|                                                        | Form                                                                |                                  | th /duration                                   | ILOs<br>assessed               |  |
|                                                        | In class<br>exercises                                               | 24 X <sup>-</sup>                | 120 minutes                                    | 4, 5, 6, 7                     |  |
|                                                        | Summative assessment                                                |                                  |                                                |                                |  |
|                                                        | Form                                                                | %                                | Length<br>/duration                            | ILOs<br>assessed               |  |
|                                                        | Oral exam –<br>theory                                               | 50%                              | 2 or 3 open-end<br>questions (about<br>hour)   | 1, 2, 3, 8,                    |  |
|                                                        | Project work presentation                                           | 50%                              | Presentation and<br>discussion (30<br>minutes) | 4, 5, 6, 7,<br>9, 10, 11       |  |
| Assessment language                                    | English                                                             |                                  |                                                |                                |  |
| Evaluation criteria and<br>criteria for awarding marks |                                                                     |                                  |                                                |                                |  |
|                                                        | of the final mar<br>- Adequad<br>problem<br>- Clarity in<br>results | k takes<br>cy of the<br>h the pr |                                                | lution of the<br>Ission of the |  |



| Required readings      | The slides presented during the lectures will be available<br>in the reserve collection. Any additional required material<br>will be supplied during the lectures and made available in<br>the reserve collection.                                                                                                                                                                                                                                                                  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supplementary readings | <ul> <li>Additional readings available in the University Library:</li> <li>Fondamenti di calcolo numerico, Giovanni<br/>Monegato, Editore CLUT, ISBN: 887992138X</li> <li>An Introduction to Computational Fluid Dynamics:<br/>the Finite Volume Method, H K Versteeg and W.<br/>Malalasekera, Ed. Person Prentice Hal, ISBN<br/>9780131274983</li> <li>Computational Methods for Fluid Dynamics, JH<br/>Ferziger and M Peric, Ed. Springer, ISBN 978-3-<br/>642-56026-2</li> </ul> |