

## Syllabus Course description

| Course title      | Advanced Topics on Machine Design<br>I – Materials behavior and machine elements<br>II – Finite Element Method (FEM) |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
| Course code       | 47503                                                                                                                |
| Scientific sector | ING-IND/14                                                                                                           |
| Degree            | Master in Mechanical Engineering and Industrial<br>Management                                                        |
| Semester          | 2 and 3                                                                                                              |
| Year              | I and II                                                                                                             |
| Academic year     | 2017/18                                                                                                              |
| Credits           | 10 (5+5)                                                                                                             |
| Modular           | Yes                                                                                                                  |

| Total lecturing hours | 60 (32 + 28)                                                                                                       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------|
| Total lab hours       |                                                                                                                    |
| Total exercise hours  | 30 (12 + 18)                                                                                                       |
| Attendance            |                                                                                                                    |
| Prerequisites         |                                                                                                                    |
| Course page           | https://next.unibz.it/en/faculties/sciencetechnology/maste<br>r-industrial-mechanical-engineering/course-offering/ |

| Specific educational<br>objectives | The course aims to introduce the design mindset and the<br>main methods for the design of mechanical systems, to<br>provide exposure to the practice of design through<br>application and to encourage understanding of the<br>broader implications of design. |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | broader implications of design.                                                                                                                                                                                                                                |

| Module 1                          | Materials behavior and machine elements                                                                                                                                                                                                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecturer                          | Franco Concli, franco.concli@unibz.it                                                                                                                                                                                                         |
| Scientific sector of the lecturer | ING-IND/14                                                                                                                                                                                                                                    |
| Teaching language                 | English                                                                                                                                                                                                                                       |
| Office hours                      | 15 - By appointment                                                                                                                                                                                                                           |
| Teaching assistant (if any )      | -                                                                                                                                                                                                                                             |
| Office hours                      | -                                                                                                                                                                                                                                             |
| List of topics covered            | The course covers the following main topics:                                                                                                                                                                                                  |
|                                   | <ol> <li>Principle of virtual work</li> <li>Shafts and shaft components         <ul> <li>a. Interference fits (hub and key)</li> <li>b. Deflections</li> <li>c. Natural frequencies</li> <li>d. Hyperstatic structures</li> </ul> </li> </ol> |

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

unibz

|                 | 2 Coore                                                           |
|-----------------|-------------------------------------------------------------------|
|                 | 3. Gears                                                          |
|                 | a. Failure modes (bending - pitting - micro                       |
|                 | pitting - scuffing)                                               |
|                 | <ul> <li>b. Gear types (spur - helical - bevel - worm)</li> </ul> |
|                 | c. Gear configurations (parallel axis,                            |
|                 | orthogonal axis, planetary)                                       |
|                 | d. Sintetic factors (sizing)                                      |
|                 | e. Strenght calculation (ISO 6336)                                |
|                 | f. Gear efficiency (Power losses)                                 |
|                 | 5.                                                                |
|                 | g. Gear stiffness (Deformation under load)                        |
|                 | h. Examples of gearboxes (motorcycle and                          |
|                 | car transmissions)                                                |
|                 | <ol> <li>Bearings (journal beraing)</li> </ol>                    |
|                 | 5. Bolted connections (screwed joints)                            |
|                 | 6. Belts (flat - V - ropes)                                       |
|                 | 7. Welded connections                                             |
|                 | 8. Pressure vessels                                               |
|                 | 9. Internal combustion engine parts (cylinder - piston            |
|                 |                                                                   |
|                 | <ul> <li>piston ring - connecting rod - crankshaft)</li> </ul>    |
| Toophing format | Frontal leatures, everying (Everying, and                         |
| Teaching format | Frontal lectures, exercises (Exercises, case studies and          |
| l               | computer lab), excursions                                         |

| Module 2                                            | Finite Element Method (FEM)                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecturer                                            | Prof. Carlo Gorla; carlo.gorla@unibz.it                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Scientific sector of the<br>lecturer                | ING-IND/14                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Teaching language                                   | English                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Office hours                                        | 15 - by appointment                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Teaching assistant <i>(if any )</i><br>Office hours | no<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| List of topics covered                              | The second module of the course introduces the finite<br>element method FEM for the analysis of solid structural<br>problems. The background of the finite element method<br>and its solution procedures for linear and nonlinear<br>analyses, contact analysis, large deformation analysis,<br>modal analysis and structural instability analysis will be<br>presented.                                                                                   |
|                                                     | Beside the theoretical part, students will apply the above-<br>mentioned approaches to the design of real mechanical<br>component such as those presented in the first module<br>(shafts, slider and rolling-elements bearings, springs,<br>threaded fasteners, power transmission and gears,<br>pressure vessels, welded connections, internal combustion<br>engine parts) and more complex systems for which an<br>analytical approach is not available. |
| Teaching format                                     | Frontal lectures, exercises (Exercises, case studies and                                                                                                                                                                                                                                                                                                                                                                                                   |



| computer lab), excursions |
|---------------------------|
|                           |

| Learning outcomes | By the end of the course, students should:                                                                           |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
|                   | - be able to apply the analysis methods to mechanical components and to design the main mechanical systems.          |
|                   | - be able to choose the geometry and materials so to satisfy the requirements of each component in terms of strength |
|                   | - be able to make reasonable assumptions when data are missing                                                       |
|                   | - be able to make a critical evaluation between different designs solutions                                          |
|                   | - be able to develop entire projects                                                                                 |

| Assessment                                             | Coursework will be weighted as follows: final written test dealing with a simple design of a structural problem (50%) and, if successful, an oral examination (50%). |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment language                                    | English                                                                                                                                                              |
| Evaluation criteria and<br>criteria for awarding marks | The final mark will be obtained combining the evaluations of the final written test and of the oral examination.                                                     |

| <b></b>                |                                                                                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required readings      | Lecture notes and documents for exercise will be available<br>on the reserve collections                                                               |
| Supplementary readings | Module 1<br>R.S.KHURMI AND J.K. GUPTA, A Textbook of Machine<br>Design, S Chand (ENG)<br>Shigley's Mechanical Engineering Design, McGraw-Hill<br>(ENG) |
|                        | G. NIEMANN, H. WINTER, Maschinenelemente, Springer<br>(GER)                                                                                            |
|                        | P. DAVOLI, M. FILIPPINI, C. GORLA, A. LO CONTE,<br>Lezioni sugli organi di macchine, Politecnica (ITA)                                                 |
|                        | Module 2<br>Olek C Zienkiewicz, Robert L Taylor, J.Z. Zhu, The Finite<br>Element Method: Its Basis and Fundamentals, Seventh<br>Edition (ENG)          |
|                        | Bernd Klein, Grundlagen und Anwendungen der Finite-<br>Element-Methode im Maschinen- und Fahrzeugbau,                                                  |



## Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

| Springer Verlag (GER)                                                                                    |
|----------------------------------------------------------------------------------------------------------|
| Giovanni Belingardi, II metodo degli elementi finiti nella progettazione meccanica, Levrotto&Bella (ITA) |