

Syllabus Course description

Course title	Mechanical Vibrations	
Course code	47506	
Scientific sector	ING-IND/13	
Degree	Master in Industrial Mechanical Engineering – Major Mechanics and Automation	
Semester	I	
Year	II	
Academic year	2019-2020	
Credits	5 ECTS	
Modular	No	

Total lecturing hours	28
Total lab hours	10
Total exercise hours	8
Attendance	Recommended
Prerequisites	Fundamentals of mechanics and dynamics from bachelor degree studies of mechanical engineering
Course page	See Online Learning Environment <u>ole.unibz.it</u>

Specific educational	Understanding and knowledge of the fundamentals for
objectives	both the theoretical as well as the experimental sides of
	mechanical vibration. This includes the mathematical
	modeling of dynamical problems, the solving of these
	derived mathematical models and understanding of the
	results. Furthers, the students will gain practical experience
	of mechanical vibrations in laboratory.

Lecturer	DrIng. Erich Wehrle		
Scientific sector of the lecturer	ING-IND/13		
Teaching language	English		
Office hours	See timetable online: www.unibz.it/en/timetable/ and by appointment		
Teaching assistant (if any)	Dott. Ric. Ilaria Palomba		
Office hours	See timetable online: www.unibz.it/en/timetable/ and by appointment		
List of topics covered	Introduction, review and preliminaries: • Modeling of dynamic systems • Free-body diagrams • Statics of rigid bars • Analytical mechanics One-degree-of-freedom systems • Undamped free vibrations • Damped free vibrations • Forced vibrations		

	 Shock Transient responses Multiple-degree-of-freedom systems Undamped free vibrations Damped free vibrations Forced vibrations Shock Transient responses Continuous systems Approximation via the finite-element method Vibrations of beams Modes of beams Experimental vibration measurement Measurement of vibrational responses Introduction to laboratory equipment and software Sensors including accelerometers, Sampling and filtering Set-up and carrying out dynamical experiments
Teaching format	Frontal lectures, hand-calculation exercises, computer exercises, laboratory exercises, group project

Learning outcomes	Knowledge and understanding1. Knowledge and understanding of the fundamentals of mechanical vibrations.
	Applying knowledge and understanding 2. Applying knowledge and understanding to analyze dynamical components, structures and systems.
	Making judgments 3. The structural-mechanical design under consideration of dynamical considerations including vibrations requires understanding and ability to make judgments based on theory and experiments
	 Communication skills 4. Communication skills to convey and transfer understanding of mechanical vibrations. 5. Communication skills to explain results of dynamical analysis and their consequences to structural-mechanical design
	Ability to learn 6. Learning skills to independently study the specific fields of mechanical vibrations for applications beyond this lecture.

Assessment	Formative assessment:			
	Form	[Details	Learning outcomes assessed
	In-class exercises		Continuously in exercise courses	1, 2, 3, 4, 5
	Summative assessment:			
	Form	%	Details	Learning outcomes assessed
	Written exam	75%	2 h	1, 2, 3, 4, 5
	Group project	25%	In teams of 2–3 students, practical project based on laboratory experiments culminating in a written report (ca. 5 pages) and a presentation (ca. 15 min)	1, 2, 3, 4, 5, 6
Assessment language Evaluation criteria and criteria for awarding marks	examples to	show wledge	on will include analytical of ability to solve vibrations e-based questions to show	al problems as
	Form		Evaluation criteria and w	eight
	Written examination (75%)	on	Theoretical knowledge (35%) Correctness of methods (30%) Correctness in solution (30%) Appropriate use of units (5%)	
	Group proj (25%)		Understanding of project Correctness of methods (Correctness in results (30 Communication of results	(30%))%)

Required readings	Lecture slides and notes
Supplementary readings	Schmitz, T. L. and Smith, K. S. (2012) Mechanical vibrations, Springer.
	Rao, S.S. (2016) Mechanical vibrations , Pearson.
	Den Hartog, J. P. (1985) Mechanical Vibrations, Dover.
	Magnus, K., Popp, K., Sexto, W. (2013) Schwingungen: Physikalische Grundlagen und mathematische Behandlung von Schwingungen, Springer.
	Giovagnoni, M. (2009) Analisi delle vibrazioni nei sistemi meccanici, Edizioni Libreria Cortina.