

1/3

COURSE DESCRIPTION – ACADEMIC YEAR 2019/2020

Course title Software Maintenance and Evolution
Course code 76017
Scientific sector INF/01
Degree European Master in Software Engineering (LM-18)
Semester 1
Year 2
Credits 8
Modular No

Total lecturing hours 48
Total lab hours 24
Total exercise hours --
Attendance Not compulsory
Prerequisites --
Course page https://ole.unibz.it/

Specific educational
objectives

The course belongs to the type "caratterizzanti – discipline "Advanced
Topic in Software Engineering" (EMSE - ATSE).

Software systems can be in use for years, if not decades – extremely
long time periods during which they must be continuously updated to
in response to changes in customer needs or other factors. The goal
of this course is to teach students basic and advanced techniques in
order to successfully evolve real-world software projects. The course
will cover the following key software maintenance and evolution
activities:

o Concept location
o Impact analysis
o Actualization
o Refactoring
o Verification

The concepts seen during the lecture will be practiced during a project
on a large, established open-source software.

Lecturer Romain Robbes
Contact Piazza Domenicani 3, Room 1.16, RRobbes@unibz.it,

+390471 016025
Scientific sector of lecturer INF/01
Teaching language English
Office hours To be defined and published on the web page of the course.
Lecturing Assistant (if any) --
Contact LA --
Office hours LA --
List of topics • Introduction to software maintenance and evolution

• Supporting maintenance and evolution by mining software
repositories

• Using software metrics to assess and monitor the quality of
software systems

• Software Refactoring

https://ole.unibz.it/
https://www.unibz.it/en/faculties/computer-science/academic-staff/person/38052-romain-robbes
mailto:RRobbes@unibz.it

2/3

• Using textual analysis techniques in the context of software
maintenance and evolution

• Using software metrics for bug prediction
• Search-based algorithms to support maintenance activities
• Release planning: effort and cost estimation techniques

Teaching format Frontal Lectures, paper presentations, in-class exercises, and group
project

Learning outcomes Knowledge and understanding

• Know the main methods and techniques for designing,
creating, and maintaining software products and services.

• Know the main methods for (re)engineering, refactoring and
optimizing software products and processes.

• Know the main methods of team, resource management and
risks analysis in software development and maintenance.

Applying knowledge and understanding
• Be able to design and implement information systems in

vertical sectors of applications according to technical,
functional and organizational requirements.

• Be able to apply innovative methods for management and
improvement of development processes in different
application domains such web or mobile.

• Be able to design and execute experimental analyses on
information systems or their components.

Making judgments

• Be able to plan and re-plan a technical project activity aimed
at building an information system and to bring it to
completion by meeting the defined deadlines and objectives.

• Be able to identify reasonable work goals and estimate the
resources required to achieve the objectives.

Communication skills
• Be able to coordinate the work of a project team and to

interact positively with members of the group.
• Be able to present in a fixed time the content of a scientific /

technical report in front of an audience also composed of
non-specialists.

Learning skills
• Be able to autonomously extend the knowledge acquired

during the study course by reading and understanding
scientific and technical documentation in Italian, German
and English.

• Be able, in the context of a problem-solving activity, to
extend even incomplete knowledge taking into account the
objective of the project

Assessment The assessment of the course consists of three parts:

• a project (50%);
• oral presentations during the semester (25%)
• a final oral exam (25%).
In case of a positive mark the project will count for all 3 regular exam
sessions. The projects have to be delivered at least one week before

3/3

the final oral exam, otherwise they cannot be assessed, and the exam
cannot be registered.  

Assessment language English

Assessment typology Monocratic commission

Evaluation criteria and
criteria for awarding
marks

The project (50% of the mark), in which students implements a series
of change requests on an existing, large-scale, open-source software
project, applying the techniques seen in class. Furthermore, progress
is documented with state of the art tools, and periodically presented
in class.

The project will be assessed based on how students apply the
techniques seen in class during the project, and on how their progress
is documented. In case of a group project, each student will be
evaluated separately.

Papers presenting state of the art work in software maintenance and
evolution will be assigned to each students during the semester and
will be presented in class. They will be assessed based on the
understanding of the material presented in the papers, the clarity of
the presentation, and the ability to relate it to other topics seen during
the course.

The final oral exam will be assessed based on the acquired knowledge
and the understanding of the material presented during the
semesters, the clarity of answers, mastery of language (also with
respect to teaching language), and the ability to summarize, evaluate,
and establish relationships between topics.

Required readings Lecture slides will be made available on the course website.

• Vaclav Rajlich, Software Engineering: The Current Practice
(Chapman & Hall/CRC Innovations in Software Engineering and
Software Development Series). ISBN: 1439841225

• Research papers will be made available on the course website and
assigned to each course participant

Supplementary readings • Martin Fowler, Refactoring: Improving the Design of Existing
Code (Addison-Wesley Professional). ISBN: 0201485672

Additional resources will be made available on the course website on
an as-needed basis.

Software used The following list includes the most important tools that we will use in
the course:
• Eclipse IDE or IntelliJ IDEA
• Git
• Github

