

## Syllabus Course description

| Course title      | Technical Physics                                 |
|-------------------|---------------------------------------------------|
| Course code       | 42131                                             |
| Scientific sector | ING-IND/11                                        |
| Degree            | Bachelor in Industrial and Mechanical Engineering |
| Semester          | 2                                                 |
| Year              | 2                                                 |
| Academic Year     | 2019-2020                                         |
| Credits           | 10                                                |
| Modular           | no                                                |

| Total lecturing hours | 64                                                            |
|-----------------------|---------------------------------------------------------------|
| Total lab hours       |                                                               |
| Total exercise hours  | 30                                                            |
| Attendance            | Not compulsory                                                |
| Prerequisites         |                                                               |
| Course page           | https://www.unibz.it/de/faculties/sciencetechnology/bachelor- |
|                       | industrial-mechanical-engineering/course-offering/            |

| Specific educational<br>objectives | The course is a core teaching in the context of the bachelor in Industrial and Mechanical Engineering and in particular within the area of Energy Engineering.                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | The aim of the course is to provide the students with a suitable knowledge of the general scientific contents, of the methods and of some specific professional skills.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    | The course deals with the fundamentals of engineering<br>thermodynamics, which are needed to understand the<br>conventional and innovative energy conversion systems.<br>The study of prime movers based on direct cycles (steam<br>and gas cycles) and inverse cycle systems is presented.<br>Fundamentals of heat transfer and heat exchanger design<br>and operation and thermodynamics of moist air complete<br>the course program. The students will learn theoretical<br>concepts as well as acquire the ability to apply these<br>concepts to some reference system calculations. |

| Lecturer | Andrea Gasparella, K0.08, andrea.gasparella@unibz.it          |
|----------|---------------------------------------------------------------|
|          | 0471 017200,                                                  |
|          | https://www.unibz.it/en/faculties/sciencetechnology/academic- |
|          | staff/person/30619-andrea-gasparella                          |
|          | Marco Baratieri, K0.03, marco.baratieri@unibz.it              |
|          | 0471 017201,                                                  |
|          | https://www.unibz.it/en/faculties/sciencetechnology/academic- |



## Freie Universität Bozen

Libera Università di Bolzano

Università Liedia de Bulsan

|                              | staff/person/27442-marco-baratieri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scientific sector of the     | ING-IND/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lecturer                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Teaching language            | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Office hours                 | Monday to Wednesday by appointment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Teaching assistant (if any ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Office hours                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| List of topics covered       | <ul> <li>FUNDAMENTALS OF THERMODYNAMICS</li> <li>Units of measure and fundamentals of Thermometry.</li> <li>First Law of Thermodynamics for open and closed systems.</li> <li>Enthalpy. Applications.</li> <li>Ideal gas</li> <li>Second Law of Thermodynamics, statements. Irreversible processes.</li> <li>Direct and inverse cycles. Carnot Cycle. Thermodynamic temperature scale. Clausius theorem and inequality. Entropy and irreversible processes.</li> <li>Thermodynamic state, state functions and thermodynamic charts. P-v-T surface for a pure substance.</li> </ul> |
|                              | ENERGY CONVERSION<br>Conventional energy sources.<br>Steam cycle. Conventional steam plants, components.<br>Internal combustion engines. Alternative engines: Otto and<br>Diesel cycles. Gas-turbine plants: Brayton-Joule cycle.<br>Combined cycle plants.                                                                                                                                                                                                                                                                                                                        |
|                              | RENEWABLE ENERGY<br>Non conventional energy sources, renewable energy sources.<br>Solar source: thermal and photovoltaic applications.<br>Wind power plants.<br>Biomass and waste energy conversion: combustion, pyrolysis<br>and gasification systems.<br>Energy efficiency: low impact buildings and integration of<br>energy generation systems from renewable sources.                                                                                                                                                                                                         |
|                              | REFRIGERATION AND COGENERATION<br>Inverse cycle systems. Refrigeration systems and heat pumps.<br>Vapor compression and adsorption systems.<br>Combine heat and power production (CHP) systems.<br>Trigeneration systems.                                                                                                                                                                                                                                                                                                                                                          |
|                              | HEAT TRANSFER<br>Heat transfer mechanisms. Thermal heat conduction in<br>monodimensional systems in steady state. Thermal heat<br>convection and dimensional analysis. Global heat transfer and<br>heat exchangers. Thermal radiation.                                                                                                                                                                                                                                                                                                                                             |
|                              | THERMODYNAMIC OF HUMID AIR<br>Gas and vapour mixtures. Thermodynamic properties of humid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



|                          | air. Processes of humid air. Winter and summer air conditioning cycles.                                                                                                                                                                                                                                                           |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Teaching format          | The course consists of classroom lectures. There are also<br>exercise classes that will give practical examples of the<br>application of the theoretical topics. Course topics will be<br>presented through presentations. Integrative teaching material<br>will be available for the students through the reserve<br>collection. |  |  |
| Learning outcomes (ILOs) | The learning outcomes need to refer to the Dublin Descriptors:<br>Knowledge and understanding                                                                                                                                                                                                                                     |  |  |
|                          | <ol> <li>Knowledge and understanding of the fundamentals<br/>topics dealing with technical systems' energy balance,<br/>heat transfer mechanisms and thermodynamic<br/>processes.</li> </ol>                                                                                                                                      |  |  |
|                          | Applying knowledge and understanding                                                                                                                                                                                                                                                                                              |  |  |
|                          | 2. Applying knowledge and understanding to the solution of energy balance analysis and to the quantification of energy fluxes within and among physical systems                                                                                                                                                                   |  |  |
|                          | Making judgements                                                                                                                                                                                                                                                                                                                 |  |  |
|                          | <ol> <li>Making judgments through the acquisition of the<br/>basics of the thermodynamic analysis of complex<br/>systems and the analysis approach based on<br/>simplification and de-structuration.</li> </ol>                                                                                                                   |  |  |
|                          | Communication skills                                                                                                                                                                                                                                                                                                              |  |  |
|                          | <ol> <li>Communication skills dealing with the correct use of<br/>highly specific terms and definitions, including the<br/>correct use and conversion of the units of<br/>measurement</li> </ol>                                                                                                                                  |  |  |
|                          | Ability to learn                                                                                                                                                                                                                                                                                                                  |  |  |
|                          | <ol> <li>Lifelong learning skills through the comparison of<br/>different<br/>sources, and engineering methods and the acquisition<br/>of a critical sense</li> </ol>                                                                                                                                                             |  |  |

| Assessment | Formative assessment |                  |          |
|------------|----------------------|------------------|----------|
|            | Form                 | Length /duration | ILOs     |
| <u></u>    |                      |                  | assessed |



|                                                | In class<br>exercises and<br>discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | durat    | urs (average<br>ion 30<br>res/exercise)                                   | 1, 2, 3, 4, 5    |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------|------------------|--|
|                                                | Summative assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                           |                  |  |
|                                                | The exam consists of two written parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                           |                  |  |
|                                                | The first deals with the solution of a well-structured<br>numerical exercise related to the calculation of energy<br>balance and exchanges of the technical systems<br>considered in the course. This way we can assess the<br>ability of the student of applying the knowledge and<br>understanding of the analysis and solution techniques,<br>and of making judgment and to correctly use the units of<br>measurement.<br>The second one consists of some open questions dealing<br>with theoretical aspects of each main topic of the course<br>(engineering thermodynamics, heat transfer,<br>thermodynamics of moist air). This way the knowledge<br>and understanding of the fundamental topics, the written<br>communication skills are assessed |          |                                                                           |                  |  |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                           |                  |  |
|                                                | Form % Length ILOs<br>/duration assessed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                                                           |                  |  |
|                                                | Written exam<br>– numerical<br>exercise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33%      | 1 exercises<br>(1 hour)                                                   | 1, 2, 3          |  |
|                                                | Written exam<br>– theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67%      | 3 open-ended<br>questions<br>(1.5 hours)                                  | 1, 2, 3, 4,<br>5 |  |
| Assassment language                            | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                                                           |                  |  |
| Assessment language<br>Evaluation criteria and | English<br>To the admissio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n to th  | e second part the firs                                                    | t one has to     |  |
| criteria for awarding marks                    | be successfully passed.<br>The first part (numerical exercise) consists of six<br>numerical questions. The answer is correct when the<br>number provided is within a given tolerance with respect<br>to the reference value. Each student works on the same<br>problem but with personal starting data. The evaluation is<br>based on the accuracy of the numerical result of each<br>question. The starting mark is 12 out of 30 and consists of<br>3 points per correct answer.                                                                                                                                                                                                                                                                        |          |                                                                           |                  |  |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                           |                  |  |
|                                                | mark.<br>In the second p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | art, ead | contributes for 1/3 to<br>ch question – out of t<br>section of the progra | he proposed 3    |  |



| thermodynamics, heat transfer, thermodynamics of moist<br>air). It equally contributes to the mark, with the exception<br>of one of the 3, which is 4/3 of the others- and requires<br>some steps to prove a proposition. The evaluation is<br>based on the completeness of the answer in terms of 1)<br>definition of the subject 2) analytical description 3)<br>graphical and mathematical representations 4) proof (if<br>required) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The score of this second part contributes for 2/3 of the final mark.                                                                                                                                                                                                                                                                                                                                                                    |

| Required readings      | Teacher's handouts and booklets (available in the reserve collection)                                                                                                                                                                                               |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supplementary readings | <ul> <li>G.F.C. Rogers, Yon Mayhew. Engineering<br/>Thermodynamics: Work and Heat Transfer (4th<br/>Edition) Pearson Education (1996)</li> <li>F. Incropera, D. DeWitt, Fundamentals of Heat<br/>and Mass Transfer (5<sup>th</sup> Edition) Wiley (2002)</li> </ul> |