Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Functional Mechanical Design for Energy Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>47509</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-IND/13</td>
</tr>
<tr>
<td>Degree</td>
<td>Master Industrial Mechanical Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
</tr>
<tr>
<td>Year</td>
<td>II</td>
</tr>
<tr>
<td>Academic year</td>
<td>2019/2020</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Modular</td>
<td>no</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>28</td>
</tr>
<tr>
<td>Total lab hours</td>
<td></td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>18</td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Some knowledge of electrical machines is preferred.</td>
</tr>
</tbody>
</table>

Specific educational objectives

The course aims at giving the guidelines for the functional design of automatic machines, in particular taking into account mechanical and energetic efficiency. Criteria and methods to analyze and choose mechanical devices and to evaluate the best system to minimize the energy consumption in electromechanical systems will be addressed.

Lecturer

Roberto Belotti

Scientific sector of the lecturer

ING-IND/13

Teaching language

English

Office hours

By appointment

Teaching assistant (if any)

- **List of topics covered**
 - Introduction: The functional design. Introduction to functional design, classification of the mechanisms and motion systems.
 - Mechanical components for transfer and transformation of energy. Classification based on function, working principle and performance/efficiency.
• Optimization aimed at improving the quality of motion and efficiency.

Teaching format
Frontal lectures, exercises.

Learning outcomes

1. **Knowledge and Understanding**
 • Identify the main components and sources of inefficiency in motor-transmission-load systems

2. **Applying knowledge and understanding**
 • Evaluate and select, from the mechanical and energy efficiency point of view, the proper transmission system;

3. **Making judgments**
 • Choose suitable and proper mechanical components for energy transformation and transfer

4. **Communication skills**
 • Ability to structure and prepare scientific and technical documentation

5. **Learning skills**
 • Ability to autonomously extend the knowledge acquired during the study course by reading and understanding scientific and technical documentation.

Assessment

Formative assessment
In class exercises and activities (2,3,4,5)

Summative assessment

The assessment of the course is:

- **Written exam.**

 Written exam with exercises and questions to test the ability to use and transfer the acquired knowledge as well as to make judgement and use a proper technical language (1,2,3,4).

- **Project work.**

 Short essay on a topic of interest, to be agreed upon with the lecturer (4,5).

Assessment language
English

Evaluation criteria and criteria for awarding marks
The final grade is the written exam grade, augmented or diminished by at most 1 point, according to the project work evaluation. N.B. The written exam grade must be ≥ 18 anyway.

Required readings
There is no single textbook that covers the entire course. A collection of suggested readings from various sources will be announced during the course.

Supplementary readings