Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Applications of fluid mechanics to energy engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>45538</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ICAR/01</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Energy Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>2</td>
</tr>
<tr>
<td>Academic year</td>
<td>2019/20</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>no</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>36</td>
</tr>
<tr>
<td>Total lab hours</td>
<td></td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>24</td>
</tr>
<tr>
<td>Attendance</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Basic knowledge of fluid mechanics</td>
</tr>
<tr>
<td>Course page</td>
<td>Reserve Collection</td>
</tr>
</tbody>
</table>

Specific educational objectives

Applications of fluid mechanics to energy engineering is an optional course within the master in Energy Engineering and is aimed to the students showing particular interest in fluid mechanics.

Some specific topics addressed only marginally in the basic courses of hydraulics and fluid mechanics will be addressed, in order to provide the students with the fundamental knowledge about turbulent flows, physical modelling and CFD (Computational Fluid Dynamics). Within the tutorials and the homework the students will have the opportunity to compare some commercial codes applied to practical applications relevant to energy engineering.

Lecturer

Giuseppe Pisaturo and Michele Larcher

Scientific sector of the lecturer

ICAR/02 and ICAR/01 (08/A1)

Teaching language

English

Office hours

Whole week, on appointment

Teaching assistant (if any)

- The course will cover the following topics:
 - Fundamentals of fluid turbulence
 - Interest of turbulent flows
 - Turbulent viscosity
 - Boundary layer
- Free turbulence
- Vortex dynamics
- Homogeneous and isotropic turbulence
- Direct and Large Eddy Simulation
- Statistical models of turbulence
- Overview of the major experimental techniques

- Computational fluid dynamics
 - Numerical simulation versus scale model test
 - 1D, 2D and 3D models, with focus on 3D
 - Detached Eddy Simulation (DES), Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS), including Reynolds stress
 - Role of boundary conditions, mesh and time step
 - Quality standards
 - Introduction into ANSYS
 - Application of ANSYS to energy engineering problems

Teaching format
Lectures and tutorials in class; homework on the numerical solution of a fluid mechanics application.

Learning outcomes
By the end of the course, students are supposed to be able to:
- **Knowledge and understanding:** (1) show the equations and explain the main principles relevant to turbulence, CFD, similarity and lubrication; (2) develop an intuitive comprehension.
- **Applying knowledge and understanding:** (3) give examples of real applications and practical problems to underline how the topics treated in the course are used within engineering activity.
- **Making judgements:** (4) the ability to make autonomous judgements in the choice and comparison of the suitable tools and for the solution of problems involving the mechanics of fluids.
- **Communication skills:** (5) communication skills to correctly and properly present the concepts acquired in the course and the results of the homework.
- **Learning skills:** (6) Ability to autonomously extend the knowledge acquired during the study course by reading and understanding scientific and technical documentation.

Assessment
The examination of the course consists in a written and an oral exam. The written consists in two exercises about fluid statics and dynamics. The candidates are requested to apply the main principles and equations of fluid mechanics in order to solve technical problems and so show their ability in applying knowledge and understanding and making judgements. The oral examination includes questions to assess the knowledge and understanding of the course topics, the learning skills and the communication skills.
Formative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>In class exercises</td>
<td>24 x 60 minutes</td>
<td>2, 3, 4, 6</td>
</tr>
</tbody>
</table>

Summative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework presentation</td>
<td>60%</td>
<td>15 minutes</td>
<td>1, 3, 4, 5, 6</td>
</tr>
<tr>
<td>Oral exam</td>
<td>40%</td>
<td>10 minutes</td>
<td>1, 2, 3, 4, 5, 6</td>
</tr>
</tbody>
</table>

Assessment language

- English

Evaluation criteria and criteria for awarding marks

Students will be evaluated on the base of an oral exam on the theoretical contents of the course (40%) and of the presentation and discussion of the homework (60%). At the oral part, knowledge and understanding of the topic (60%), the communication skills (20%) and the ability to summarize (20%) are assessed. At the presentation and discussion of the homework, applying knowledge and understanding (30%), making judgments (25%), the communication skills (25%) and the learning skills (20%) will be assessed.

Required readings

The topics will be sampled out of different books. Attending regularly the classes is highly recommended. Some material will be made available in the reserve collection.

Supplementary readings

- D. C. Wilcox, Turbulence modeling for CFD, DCW Industries, 2006
- J.C. Gibbings, Dimensional Analysis, Springer, 2011
- B. Zohuri, Dimensional Analysis and Self Similarity Methods for engineers and Scientists, Springer, 2015
- A. Adami, I modelli fisici nell'idraulica, CLEUP, 1994