COURSE DESCRIPTION – ACADEMIC YEAR 2019/2020

<table>
<thead>
<tr>
<th>Course title</th>
<th>Advanced Topics in Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>73021</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF/05</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Computational Data Science (LM-18)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>2</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>40</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>20</td>
</tr>
<tr>
<td>Attendance</td>
<td>It is highly recommended to attend the Lab sessions.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Course page</td>
<td>https://ole.unibz.it/</td>
</tr>
</tbody>
</table>

Specific educational objectives

The course belongs to the type "caratterizzanti – discipline informative" in the curricula “Data Analytics” and “Data Management”.

In this course, students will learn the fundamentals of deep learning with a special focus on image-related applications. Moreover, students will learn how to implement, train, and validate a Convolutional Neural Network, and they will improve their understanding of the ongoing research in the field of image processing and computer vision.

Lecuturer

Tammam TILLO

Contact

POS 1.17, ttilo@unibz.it, +39 0471 016026

Office hours

- Tuesday 15:00-17:00, faculty of computer science, Piazza Domenicani 3, Office 1.17.
- It is recommended to make an appointment beforehand by email.

List of topics

- Computer vision
- Image classification
- Convolutional Neural Networks (CNN)
- Training Neural Networks
- Understanding and visualizing Convolutional Neural Networks
- Deep Reinforcement Learning

Teaching format

This course will be delivered through a combination of formal lectures and lab sessions.

Learning outcomes

Knowledge and understanding:
- D1.1 - Knowledge of the key concepts and technologies of data science disciplines
Assessment

- Lab exercises
- Final exam (written)

The written exam will consist of a set of verification questions, transfer of knowledge questions and exercises.

Assessment language

English

Assessment Typology

Monocratic

Evaluation criteria and criteria for awarding marks

Marks are distributed as follows:
1. 30% for lab exercises
2. 70% for final exam

The aim of the written exam is to assess to which degree students have achieved the following learning outcomes: 1) knowledge and understanding, 2) applying knowledge and understanding, 3) making judgment.

The laboratory exercises are designed to assess students' ability to design solutions for practical problems.

Required readings

Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it

Supplementary readings

Suggested book:
- Title: Pattern Recognition and Machine Learning;
 Author: Chris Bishop;
<table>
<thead>
<tr>
<th>Software used</th>
<th>The lab experiments will be performed using MATLAB or PYTHON or other software tools.</th>
</tr>
</thead>
</table>

- **Title**: Deep Learning
 Authors: Ian Goodfellow, Yoshua Bengio and Aaron Courville