SYLLABUS

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>76215</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
<td>INF/01</td>
</tr>
<tr>
<td>DEGREE</td>
<td>Bachelor in Computer Science</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>YEAR</td>
<td>2nd year</td>
</tr>
<tr>
<td>CREDITS</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
<td>20</td>
</tr>
<tr>
<td>PREREQUISITES</td>
<td>Students should have done the following courses: Computer Programming, Programming Project</td>
</tr>
<tr>
<td>COURSE PAGE</td>
<td>ole.unibz.it</td>
</tr>
<tr>
<td>SPECIFIC EDUCATIONAL OBJECTIVES</td>
<td>Type of course: "caratterizzanti"</td>
</tr>
<tr>
<td></td>
<td>Scientific area: "discipline informatiche"</td>
</tr>
<tr>
<td></td>
<td>The course introduces the state-of-the-art in software engineering. It aims to demonstrate how this is transferred into practically applicable knowledge and skills for software development.</td>
</tr>
</tbody>
</table>

LECTURER

Claus Pahl

SCIENTIFIC SECTOR OF THE LECTURER

INF/01

TEACHING LANGUAGE

English

OFFICE HOURS

After the lecture/lab times or by appointment (email). Faculty of CS, Piazza Domenicani 3, Office 1.11

TEACHING ASSISTANT

Claus Phal

OFFICE HOURS

TBA
LIST OF TOPICS COVERED

- Software life-cycle: principles and methodologies
- Software processes and software project management
- Requirements engineering: elicitation and modeling
- System modeling and construction: UML, design patterns
- Software testing: principles and techniques
- Software management and evolution

TEACHING FORMAT

Frontal lectures, exercises, projects.

LEARNING OUTCOMES

Knowledge and understanding
- Know in detail principles, techniques and methods of planning, designing, developing and maintaining software;

Applying knowledge and understanding
- Be able to apply the own knowledge to the analysis, design, development and testing of information systems which satisfy given requirements;
- be able to solve typical problems in computer science, such as the definition of requirements, the analysis of possible methods for a solution, the selection of methods and tools as well as their application;
- be able to evaluate the quality of information systems and to identify critical aspects;
- be able to apply the own knowledge in different working contexts;

Making judgments
- be able to take the responsibility for software development projects

Communication skills
- be able to explain a project activity or a scientific study, also to non-experts
- be able to work in teams to implement software systems

Ability to learn
- have acquired learning capabilities that enable them to carry out project activities in companies, public institutions or in distributed development communities
- be able to learn cutting edge IT technologies and their strengths and limitations

ASSESSMENT

Written and project work: written exam with verification questions and written project report done in groups.

In case of a positive mark the project will count for all 3 regular exam sessions.

Projects have to be submitted BEFORE the final exam at the end of the semester, otherwise the exam cannot be registered.

ASSESSMENT LANGUAGE

English

EVALUATION CRITERIA AND WEIGHTING

- 70% written exam
CRITERIA FOR AWARDING MARKS

- 30% exercises/project.

Criteria:

Relevant for assessment of project and exam:
- clarity of answers,
- mastery of language,
- skills in critical thinking
- ability to summarize, evaluate, and establish relationships between topics,
- technical competence

Relevant for project assessment:
- ability to work in a team,
- creativity,
- development skills

REQUIRED READINGS

The course will be based on lecture notes

SUPPLEMENTARY READINGS

SOFTWARE USED

Software Modelling (e.g. Argo UML, Papyrus, StarUML, UMLet)