SYLLABUS COURSE DESCRIPTION

COURSE TITLE	Mathematics II
COURSE CODE	76202
SCI ENTI FIC SECTOR	MAT/05 and MAT/08
DEGREE	Bachelor in Computer Science
SEMESTER	2nd
YEAR	1 st
CREDITS	12
MODULAR	Yes

| | |
| :--- | :--- | | TOTAL LECTURI NG |
| :--- |
| HOURS |$~ 40$ pro modules

SPECI FIC EDUCATIONAL OBJ ECTIVES

- Type of course: "di base" for L-31
- Scientific area: "Formazione matematica-fisica" for L-31

MODULE 1:
The aim of this module is to introduce students to the following topics: 1) sequences and series ; 2) univariate functions ; 3) derivatives, differentials and Taylor theorem ; 4) Riemann integral ; 5) logarithmic and exponential functions ; and 6) normed vector spaces.

Module 2
The aim of this module is to teach students how to derive, analyze and implement numerical methods for solving systems of linear equations, computing eigenvalues and singular values of matrices, approximating functions and roots. To achieve these aims, students will solve mathematical problems in both exact and finite precision arithmetic, and analyze the mathematical theory to build the methods used for the numerical solution. The module will cover the basic topics of stability, error analysis and efficiency for various numerical linear algebra and approximation algorithms. A software environment for numerical computing known as Matlab will be introduced that allows high-performance matrix manipulations, data plotting, efficient implementation of algorithms.

Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

MODULE 1	Analysis
MODULE CODE	76202A
MODULE SCI ENTI FIC SECTOR	MAT/05
CREDITS	6
LECTURER	Tammam Tillo
SCI ENTI FIC SECTOR OF THE LECTURER	ING-INF/05
TEACHING LANGUAGE	English
OFFICE HOURS	- Tuesday 15:00-17:00, Faculty of computer science, Piazza Domenicani 3, Office 1.17. - It is recommended to make an appointment beforehand by email.
TEACHING ASSI STANT	Tammam Tillo, Piazza Domenicani 3, Office 1.17, ttillo@unibz.it Simone Ugolini, Piazza Domenicani 3, Office 1.04, Simone.Ugolini@unibz.it
OfFICE HOURS	By appointment via email.
LIST OF TOPICS covered	- Sequences and series - Univariate functions - Derivatives, differentials and Taylor Theorem - Riemann integral - Logarithmic and exponential functions - Normed vector spaces
TEACHI NG FORMAT	This course will be delivered through a combination of formal lectures and exercises

MODULE 2	Computational Mathematics	
MODULE CODE	76202B	
MODULE SCI ENTI FIC	MAT/08	
SECTOR		
CREDITS	6	
LECTURER	Bruno Carpentieri	
SCI ENTI FIC SECTOR	MAT/08	
OF THE LECTURER		
TEACHI NG	English	
LANGUAGE		

Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

OFFICE HOURS	Faculty of Computer Science, Piazza Domenicani 3, Office 3.10, Bruno.Carpentieri@unibz.it, By appointment via email.
TEACHING ASSI STANT	Faculty of Computer Science, Piazza Domenicani 3, Office 3.10, Bruno.Carpentieri@unibz.it Simone Ugolini, Piazza Domenicani, 3, Office 1.04, Simone.Ugolini@unibz.it
OFFICE HOURS	TBA, Simone Ugolini, Piazza Domenicani, 3, Office 1.04, Simone.Ugolini@unibz.it
LIST OF TOPICS COVERED	- Matrix computation - Singular value decomposition - Iterative methods for linear algebra - Functional approximation - Bisection and fixed-point iterations - Newton-Raphson method
TEACHI NG FORMAT	Frontal lectures, exercises in lab.

Learning outcomes	Knowledge and understanding - Have a solid knowledge of mathematics that are in support of computer science; Applying knowledge and understanding - Be able to use the tools of mathematics to solve problems; Making judgments - Be able to work autonomously according to the own level of knowledge and understanding; Ability to learn - Have developed learning capabilities to pursue further studies with a high degree of autonomy.

| ASSESSMENT | Written exam for each of the two modules.

 The written exam will consist of a set of verification questions, transfer of
 knowledge questions and exercises. The aim of the assessment is to check
 to which degree students have mastered the following learning outcomes:
 1) knowledge and understanding, 2) applying knowledge and understanding,
 3) making judgment. |
| :--- | :--- | Fakultät für Informatik

Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

ASSESSMENT LANGUAGE	English
EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS	Final Written Exam, 100\% covering the full program. Written exam questions will be evaluated in terms of correctness, clarity, quality of argumentation, problem solving ability. Both modules must be positive to pass the course. A positive evaluation of one module remains valid for all three regular exam sessions of the academic year.

REQUIRED READINGS	Module 1: Students should refer primarily to their notes taken in class (lectures and exercise classes) and consult the suggested textbooks. Module 2: Greenbaum, A. and Chartier, T. P. (2012), Numerical Methods. Design, Analysis, and Computer Implementation of Algorithms, Princeton University Press Lindfield, G. R. and Penny, J. E. T. (2012), Numerical Methods Using MATLAB, Academic Press Attaway, S. (2016), Matlab: A Practical Introduction to Programming and Problem Solving, Butterworth-Heinemann
SUPPLEMENTARY READINGS	Module 1: - Title : Real analysis ; Author: John M. Howie; ISBN : 978-1-4471-0341-7 - Title : Analysis by Its History ; Authors : Gerhard Wanner, Ernst Hairer ; ISBN : 978-0-387-94551-4 - Title : Calculus: A Complete Course ; Author : Robert A Adams; ISBN: 0-321-27000-2 Module 2 Atkinson, K. E. (1989), An Introduction to Numerical Analysis, Wiley Moler, C. (2004), Numerical Computing with MATLAB, SIAM, Philadelphia
SOFTWARE USED	No software is needed for Module 1 Matlab for Module 2

