

## Syllabus Course description

| Course title      | Applications of fluid mechanics to energy engineering |
|-------------------|-------------------------------------------------------|
| Course code       | 45538                                                 |
| Scientific sector | ICAR/01                                               |
| Degree            | Master in Energy Engineering                          |
| Semester          | 2                                                     |
| Year              | 2                                                     |
| Academic year     | 2017/18                                               |
| Credits           | 6                                                     |
| Modular           | no                                                    |

| Total lecturing hours | 36                                 |
|-----------------------|------------------------------------|
| Total lab hours       |                                    |
| Total exercise hours  | 24                                 |
| Attendance            |                                    |
| Prerequisites         | Basic knowledge of fluid mechanics |
| Course page           | Reserve Collection                 |

| Specific educational<br>objectives | Applications of fluid mechanics to energy engineering is<br>an optional course within the master in Energy<br>Engineering and is aimed to the students showing<br>particular interest in fluid mechanics.                                                                                                                                                                                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Some specific topics addressed only marginally in the<br>basic courses of hydraulics and fluid mechanics will be<br>addressed, in order to provide the students with the<br>fundamental knowledge about turbulent flows, physical<br>modelling and CFD (Computational Fluid Dynamics).<br>Within the tutorials and the homework the students will<br>have the opportunity to compare some commercial codes<br>applied to practical applications relevant to energy<br>engineering. |

| Lecturer                          | Michele Larcher                             |
|-----------------------------------|---------------------------------------------|
| Scientific sector of the lecturer | ICAR/01 (08/A1)                             |
| Teaching language                 | English                                     |
| Office hours                      | Whole week, on appointment                  |
| Teaching assistant (if any )      | Roman Gabl                                  |
| Office hours                      | Whole week, on appointment                  |
| List of topics covered            | The course will cover the following topics: |
|                                   | Fundamentals of fluid turbulence            |
|                                   | - Interest of turbulent flows               |
|                                   | - Turbulent viscosity                       |
|                                   | - Boundary layer                            |

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

unibz

|                   | <ul> <li>Free turbulence</li> <li>Vortex dynamics</li> <li>Homogeneous and isotropic turbulence</li> <li>Direct and Large Eddy Simulation</li> <li>Statistical models of turbulence</li> <li>Overview of the major experimental techniques</li> <li>Computational fluid dynamics         <ul> <li>Numerical simulation versus scale model test</li> <li>1D, 2D and 3D models, with focus on 3D</li> <li>Detached Eddy Simulation (DES), Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS), including Reynolds stress</li> <li>Role of boundary conditions, mesh and time step</li> <li>Quality standards</li> <li>Introduction into CFX, comparison to FLOW-3D</li> <li>Application of CFX to energy engineering problems</li> </ul> </li> <li>Similarity analysis and physical models         <ul> <li>Basics of the dimensional analysis</li> <li>Common Dimensionless Groups</li> <li>Applications to flow in pipes</li> <li>Applications to flow in channels</li> </ul> </li> <li>Hydrodynamic lubrication         <ul> <li>Mathematical foundations</li> <li>Slider bearings</li> <li>Externally pressurized bearings</li> <li>Squeeze films</li> <li>Journal bearings</li> </ul> </li> </ul> |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Teaching format   | Lectures and tutorials in class; homework on the numerical solution of a fluid mechanics application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Learning outcomes | By the end of the course, students are supposed to be able to:<br>- <i>Knowledge and understanding:</i> show the equations and explain the main principles relevant to turbulence, CFD, similarity and lubrication; develop an intuitive comprehension.<br>- <i>Applying knowledge and understanding:</i> give examples of real applications and practical problems to underline how the topics treated in the course are used within engineering activity.<br>- <i>Making judgements:</i> the ability to make autonomous judgements in the choice and comparison of the suitable tools and for the solution of problems involving the mechanics of fluids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| *                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment                                             | The examination of the course is based on oral questions<br>about the contents of the course and on the presentation<br>and discussion of the homework, consisting in the<br>numerical solution of a fluid mechanics application. The<br>candidates are requested to apply the main principles and<br>equations of fluid mechanics in order to solve technical<br>problems. The oral examination includes questions to<br>assess the knowledge and understanding of the course<br>topics and the communication skills. |
| Assessment language                                    | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Evaluation criteria and<br>criteria for awarding marks | Students will be evaluated on the base of an oral discussion (60%) and of the presentation and discussion of the homework (40%). At the oral part, knowledge and understanding of the topic (60%), the communication skills (20%) and the ability to summarize (20%) are assessed. At the presentation and discussion of the homework, applying knowledge and understanding (30%), making judgments (25%), the communication skills (25%) and the learning skills (20%) will be assessed.                              |

| Required readings      | The topics will be sampled out of different books.<br>Attending regularly the classes is highly recommended.<br>Some material will be made available in the reserve<br>collection.                                                                                                                              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supplementary readings | C. Bailly & G. Comte-Bellot, Turbulence, Springer, 2015<br>H. Tennekes & J.L. Lumley, A First Course in Turbulence.<br>MIT Press, Cambridge 1972<br>J.O. Hinze, Turbulence, McGraw-Hill International Book                                                                                                      |
|                        | Company, New York, 1975<br>D. C. Wilcox, Turbulence modeling for CFD, DCW<br>Industries, 2006                                                                                                                                                                                                                   |
|                        | <ul> <li>H. Oertel (ed.), Prandtl-Essentials of Fluid Mechanics,<br/>Applied Mathematical Sciences 158, Springer, 2010</li> <li>Y.A. Çengel, &amp; J.M. Cimbala, Fluid Mechanics –<br/>Fundamentals and Applications, 2006, McGraw-Hill</li> <li>J.C. Gibbings, Dimensional Analysis, Springer, 2011</li> </ul> |
|                        | <ul><li>B. Zohuri, Dimensional Analysis and Self Similarity<br/>Methods for engineers and Scientists, Springer, 2015</li><li>L.P. Yarin, The Pi-Theorem. Applications to Fluid</li></ul>                                                                                                                        |
|                        | Mechanics and Heat and Mass Transfer, Springer, 2012<br>A. Adami, I modelli fisici nell'idraulica, CLEUP, 1994                                                                                                                                                                                                  |
|                        | W.E. Langlois and M.O. Deville, Slow Viscous Flow, Springer, 2014                                                                                                                                                                                                                                               |