

Syllabus Course description

Course title	Mechanics and Structural Design for Energy Engineering
Course code	45502A - 45502B
Scientific sector	ICAR/08 – ICAR/09
Degree	Master Energy Engineering
Semester	1
Year	2
Academic year	2018/2019
Credits	3 + 3
Modular	Yes

Total lecturing hours	50
Total lab hours	0
Total exercise hours	10
Attendance	Not compulsory
Prerequisites	Students regularly enrolled at the 2nd year of the Master Study Programme in Energy Engineering are allowed to follow this course. For a fruitful attending of the course basic knowledge of solid and structural mechanics is needed. Attendance of the Module 45502A for a fruitful attending of the Module 45502B
Course page	http://www.unibz.it/en/sciencetechnology/ progs/master/energy/courses/default.html?year=2

Specific educational	The course investigates good practice in the design of
objectives	steel structures, presenting requirements, standards and
	methodologies that have to be followed in order to design
	efficient yet reliable structures. The students attending
	this course are expected to learn how to design key
	components in steel structures to be implemented in
	systems for energy applications, including wind energy,
	hydraulic energy, solar energy and bioenergy and relevant
	industrial plants.

Module 1	Fundamental of Structural Mechanics
Lecturers	Maria Pantano (responsible of the course)
	Oreste S. Bursi
Scientific sector of the	ICAR-08 – Scienza delle Costruzioni/Structural Mechanics
lecturer	
Teaching language	English
Office hours	Appointment by email
Teaching assistant (if any)	-
Office hours	-

	•
List of topics covered	Part I: Overview – 6 hours, Oreste S. Bursi- Overview on the applications and benefits of steel and steel structures in energy engineering systems. Examples related to wind energy, hydraulic energy, solar energy and bioenergy and relevant industrial plants. Applications and benefits of steel and steel structures in Energy Engineering.
	Part II: Material and Analysis – 24 hours, Maria Pantano- Mechanical properties of materials with particular emphasis on steel and concrete. Standards for the design of steel structures according to European rules. Plasticity. Elements of structural dynamics and fatigue. Exercises with theory applications.
Teaching format	Class lectures (blackboard and/or slides). Some of the lecture material (slides) will be available for download by the students.

Module 2	Fundamental of Structural Design				
Lecturers	Oreste S. Bursi (responsible of the course)				
	Nicola Tondini				
Scientific sector of the	ICAR/09-Tecnica delle Costruzioni/Structural Design				
lecturer					
Teaching language	English				
Office hours	Appointment by email				
Teaching assistant (if any)	Dr. Alessio Bonelli				
Office hours	Appointment by email				
List of topics covered	Part I: Modern standards and analysis methods – 8 hours, Oreste S. Bursi-				
	Design based on modern national and European				
	standards. Global analysis of structures. Stiffness and				
	strength of elements.				
	Part II: Design of steel structures – 16 hours, Nicola				
	I ONGINI -				
	Line load bearing capacity of steel elements. Posistence of				
	steel members to tonsion, compression, bonding, shear				
	and combined actions. Buckling resistance of steel				
	members Stability of steel shell elements. Rolted and				
	welded connections and joints. Design of holted				
	connections. Worked examples				
	Part III: Exercises – 6 hours, Alessio Bonelli-				
	Verification of a Wind Turbine Mast.				
Teaching format	Class lectures (blackboard and/or slides) and design				
	exercises using spreadsheets. Some of the lecture material				
	(slides) will be available for download by the students				
·····					
Learning outcomes	Knowledge and understanding				
	1. Knowledge of the main static and dynamic mechanical				

	properties of mat reference to steel used in steel stru <u>Applying knowled</u> 2. Capability of re structures could k such as those rela and capability of the steel structure <u>Making judgemen</u> 3. The student wi design of an exist aspects and sugg in both static and <u>Communication s</u> 4. The student wi knowledge with v discipline, describ activity and the fe <u>Learning skills</u> 5. Lifelong learning critical tools and of specifications	erials ar l, as wel ctural ap locognizir be profit ated to v defining es for er <u>hts</u> ill be ab ting stee est rede dynami <u>kills</u> ill be ab rocabula bing effic eatures	nd structures, il as the main oplications. <u>understanding</u> ng where steel ably used in e wind, hydraulie requirements nergy applications ic performance le to discuss the esign solutions ic performance le to discuss the ry and technic ciently the out of different so polity through the evaluation of p	with techr l and nerg c or s in th ions. e val entify and e. he lea come lution	particular nical standards steel y systems, solar energy, ne design of idity of the y critical improvements arned rms of the e of the design ns.
Assessment	Oral examination knowledge and the the course and The capability applicative case judgment will be design work assign Formative asse Form Development of the assigne design work Summative asse Form Oral examination, including	with che capa the capa to tra s and evaluat gned dur ssment Lenc of Durin d cour essmer % 100	juestions aime bility to under stery of the to insfer these the develop ed through the ring the course t <u>ith/duration</u> ng the se nt Length/duration	ed a rstan techr cor bed ne dis e. <u>ILO</u> (2), tion	t verifying the d the topics of nical language. mpetences to autonomy of scussion of the <u>s assessed</u> (3), (5) ILOs assessed All, except (5)

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

	the	design					
	work						
Assessment language	English						
Evaluation criteria and	A single	final vot	e will tak	e into a	iccount kno	owledge	e of the
criteria for awarding marks	topics presented during the course, ability to synthesize						
	informa	tion, corr	ectness o	of the te	echnical ter	ms and	d clarity
	(50 %).	With ref	erence to	the de	veloped de	esign w	ork, the
	capabili	ty to ana	lyze the	propose	d problem	and to	design
	reliable	steel o	compone	nts in	structures	s for	energy
	applicat	ions will k	be taken	into acc	ount (50 %	6).	

Required readings	European technical standard: UNI EN 1993-1-1 D. Roylance, Modules in Mechanics of Materials, A web- based collection of educational modules developed under the auspices of the National Science Foundation. MIT course. Davoli et al. "Comportamento meccanico dei materiali", Mc Graw-Hill. Bursi, O.S., Pucinotti, R., Zanon, G., Progettazione di Giunzioni e Strutture Tubolari in Acciaio, Flaccovio, September 2012 ISBN: 978-88-579-0158-9
Supplementary readings	Cocco, D., Palomba, C., Puddu, P., "Tecnologie delle Energie Rinnovabili", SGEditoriali, Padova, 2010. Battisti, L., Gli Impianti Motori Eolici, Editore L. Battisti, Agosto 2012.