Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Drawing 3D CAD 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>97096</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ICAR/17 formazione di base nella rappresentazione</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Design and Art (L-4)</td>
</tr>
<tr>
<td>Semester</td>
<td>Winter and summer semester 2018/19</td>
</tr>
<tr>
<td>Year</td>
<td>1st</td>
</tr>
<tr>
<td>Credits</td>
<td>8</td>
</tr>
<tr>
<td>Modular</td>
<td>no</td>
</tr>
</tbody>
</table>

Total lecturing hours	winter semester 60 + 60 (2 groups); summer semester 60 + 60 (2 groups)
Total hours of self-study	about 80
and/or other individual	
educational activities	
Total exercise hours	--
Attendance	Not compulsory but strongly recommended
Prerequisites	--
Course page	--

Specific educational objectives

The course belongs to the class “di base” in the curriculum in Design.

The course Drawing 3D CAD 1 and 2 will introduce the students to the most advanced digital design techniques for 3D modeling and visualization.

The students of the 1st year will be introduce to the representation modeling of the objects in the three-dimensional space using the most cutting edge tools for modeling and representation with the software Rhinoceros, Grasshopper and KeyShot.

Aim of the course is to provide all the knowledge from basic to advance digital design as part of the design processes and strategies.

In the first semester the students will be introduced to the software and the logics behind them. Simple objects of everyday life will be recreated in 3D, studying the forms, materials, and the different techniques and methods for their representation and visualization.

The second semester will be focus on the advanced digital
modeling with the introduction of parametric modeling, in order to achieve a control of creation, manipulation and representation of forms, from simple to advanced geometries. Different methods of representation will be covered and discussed through a fluid workflow between different platforms.

The course is a preparation for a further development and improving of visualization, modeling and observation skills of the students.

Educational objectives
The students will acquire:

- Knowledge necessary to manage the design process from concept to final visualization
- Tools necessary for the realization of design projects and interdisciplinary scientific knowledge

Lecturer
Cecilia Sannella,
Office F3.04,
e-mail Cecilia.Sannella@unibz.it,
tel. 0471 01 50XX,
lecturer’s page: https://www.unibz.it/en/faculties/design-art/academic-staff/person/38303-cecilia-sannella

Scientific sector of the lecturer
--

Teaching language
English

Office hours
24 – please refer to the timetable online

List of topics covered
3D modeling, visualization, parametric design, digital advanced design, designs strategies and processes visualization, rendering and postproduction.

Teaching format
Frontal lessons based on handouts. The students will have individual exercises based on the topics covered and will be assisted through desk critics. Intermediate group discussion during the semester (PIN-UP) based on individual tasks. Every lesson will cover a specific topic. Exercises based on the reproduction of objects applying the techniques learned in class.
Posting the exercises on the class blog.

Learning outcomes

Learning Ability
The students will be able to apply knowledge linked to the design of:

- design CAD (computer – aided design)
- drawings CAD (computer - aided design)
- 3D models
- prototypes and models of virtual operation
- virtual and physical visualization scenarios

Knowledge and understanding
The students will have acquired:

- basic knowledge necessary to the realization of a
project in the field of product design, visual communication and/or art, from a technical, scientific and theoretical point of view
- basic knowledge necessary to operate a critical point of view regarding their work and to compare with the contemporary complexity
- basic knowledge relative to design culture in all its components, but also to the technical, scientific and theoretical disciplines in order to proceed the further study with a master degree in an international environment.

Applying knowledge and understanding
The students will be able to:
- create, develop, realize a design in the field of product design, visual communication, and/or visual arts
- improve and develop what learned in the course field for a further study with a master degree in the design field

Making judgements
The students will have developed:
- a good judgment autonomy finalized to the development of their own design skills and decisions (technical, scientific and theoretic) necessary to bring a project to its completion
- a good judgment autonomy both in the critical evaluation of their work and in the ability to use correct interpretative tools in relationship to the contexts where they will apply their practice and/or to continue their studies also evaluating the ethical and social aspects

Communication skills
The students will be able to:
- present at a professional level a project realized in the field of product design, visual communication and/or visual arts in the form of installation, orally and in writing
- communicate and argue on a professional level the reasons for their choices and motivate them from a formal, technical, scientific and theoretical point of view
- communicate and present at a professional level their own project in another language besides their own

Learning skills
The students will have:
- learned at a professional level a design...
methodology intended as the ability to identify, develop and implement solutions to complex design problems by applying the knowledge acquired in the technical, scientific and theoretical fields necessary to start a professional activity and/or continue the studies with a master degree:
- developed a creative attitude and learned how to increase and enhance it according to their own inclinations
- acquired a basic knowledge of theoretical, scientific and technical disciplines combined with a suitable study methodology in order to continue their study path with the master degree.

Assessment	Students have to pass an intermediate exam at the end of the winter semester. The exam consists in a conversation and a check of the students’ work of the courses. Students will get a mark that will influence the final mark at the end of summer semester. Oral and project work: Students must present a portfolio of the exercises developed during each semester and final boards. The exam will be oral with review questions to test knowledge application skills, evaluation of results.
Assessment language	English
Evaluation criteria and criteria for awarding marks	The evaluation criteria will be based on the student's works developed during the course and on the final presentation. Final mark will be the sum of the marks from partial evaluations (1 and 2) Relevant for semester 1 will be the ability to think critically and observe reality, clear communicate the design strategies and processes, move independently in the 3D space and apply the tools learned. Relevant for semester 2 will be the ability to move independently among the different methods of representations, understanding the possibility of the three dimensional space, have familiarity with advance digital design tools, think critically and observe reality, make forms in the three dimensional space and apply complex transformation tasks, clear communicate the design strategies and the steps of design processes.
Required readings	Handouts of the different topics will be provided
Supplementary readings	Supplementary readings will be loaded in the reserve collection https://eu.alma.exlibrisgroup.com/leganto/readinglist/lists