Syllabus

Course description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Unit operations in food processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>44700</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>AGR/15</td>
</tr>
<tr>
<td>Degree</td>
<td>Food Sciences for Innovation and Authenticity</td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
</tr>
<tr>
<td>Year</td>
<td>I</td>
</tr>
<tr>
<td>Academic year</td>
<td>2018/19</td>
</tr>
<tr>
<td>Credits</td>
<td>12</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module title</th>
<th>Food Sciences for Innovation and Authenticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>44700A</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>AGR/15</td>
</tr>
<tr>
<td>Degree</td>
<td>Master</td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
</tr>
<tr>
<td>Year</td>
<td>I</td>
</tr>
<tr>
<td>Academic year</td>
<td>2018/19</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

Total lecturing hours	36
Total lab hours	12
Total exercise hours	12
Attendance	Recommended
Prerequisites	
Course page	

Specific educational objectives

Aims

The course aims to provide concepts related to the phenomenological understanding of the main unit operations of food technology. It is mainly focused on the description of the operating principles and design of industrial equipment, used in the processing, storage and packaging of foods.

The analysis of the unit operation provides the basic background to understand food processes and their impact on the product quality. Mass and energy balances are applied to the main unit operations of the food industry as evaporation, distillation, extraction, and drying. Examples applied to different foods are incorporated to ensure that the student gains an...
understanding of the relationship between foods and processes.

Educational objectives:

1) The student is able to represent the unit operations of a food process

2) Given a unit operation, the student is able to understand the main processing parameters

3) Given a unit operation, the student is able to describe the theory and the phenomena occurring during the process

4) Given a unit operation, the student is able to analyze the process, describe the variables governing it, write and solve the energy and mass balances, predict the changes occurring to foods

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Giovanna Ferrentino, NOI Technology Park, via Ipazia 1, Bolzano, giovanna.ferrentino@unibz.it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific sector of the lecturer</td>
<td>AGR/15</td>
</tr>
<tr>
<td>Teaching language</td>
<td>English</td>
</tr>
<tr>
<td>Office hours</td>
<td>16</td>
</tr>
<tr>
<td>From Monday to Friday (appointment requested)</td>
<td></td>
</tr>
<tr>
<td>Teaching assistant (if any)</td>
<td>To be recruited</td>
</tr>
</tbody>
</table>
| List of topics covered | **Section 1. Introduction**
- Definition of unit operation
- Degree of freedom and variables of project
- Dimensional analysis
- Mass balance on a single unit operation
- Energy balance on a single unit operation

Section 2. Fluid flow in food processing
- Liquid Transport Systems
- Properties of Liquids
- Handling Systems for Newtonian Liquids
- Energy Equation for Steady Flow of Fluids
- Flow Characteristics of Non-Newtonian Fluids

Section 3. Unit operations for separation of food components
- Distillation
 - Principles of the unit operation
 - Application of distillation in the food industry
 - Flask distillation
 - Continuous distillation with reflux
- Material balances in plate columns
- Number of ideal plates; McCabe-Thiele Method
 - Liquid-liquid extraction
 - Extraction equipment
 - Principle of extraction
 - Mass balance
 - Number of ideal stages

Section 4. Unit operations for stabilizing food through water removal
- Evaporation
 - Principles of the unit operation
 - Application of evaporation in the food industry
 - Types of evaporators
 - Mass and energy balances on single effect evaporator
 - Mass and energy balances on multiple effect evaporators
- Drying
 - Principle of the unit operation
 - Application in the food industry
 - Phase equilibria
 - Mass and energy balances during a drying process

Section 5. Packaging Concepts
- Introduction
- Mass transfer in packaging materials
- Innovation in food packaging
- Food packaging and product shelf life

Teaching format
Frontal lectures, exercises, labs, projects

Learning outcomes

Knowledge and understanding
The student will gain a deep knowledge of the process plants and the unit operations. He will get familiar with simplified models correlating operational and/or project parameters with their effects on the energy and mass balances.

Applying knowledge and understanding
The student will be able to apply the theoretical knowledge of the course to practical problems.

Making judgments
The student will be able to assess the applicability of the unit operations by highlighting the advantages and disadvantages deriving from their use.

Communication skills
The student will develop a written report on a topic concerning the unit operations described during the course using an appropriate technical-scientific terminology.

Learning skills
The student will learn how to solve mass and energy balances applied to unit operations by means of calculations and graphics.

| **Assessment** | The final assessment includes a written exam. It will include the resolution of numerical problems and the answer to theoretical questions to test the knowledge and the skills acquired during the course. |
| **Assessment language** | English |
| **Evaluation criteria and criteria for awarding marks** | The evaluation comprises of a written exam divided in two part:
1. Resolution of a numerical exercise (80%, 24 points of 30)
2. Answer to a theoretical question (20%, 6 points of 30)
Criteria for the resolution of the numerical part are:
- The correct identification of the process parameters involved in the unit operation
- The correct writing of the mass and energy balances
- The correct expression of the results
Criteria for the answer to the theoretical question are:
- clarity of answers
- ability to summarize and establish relationships |

| **Required readings** | Slides discussed during the lecture

| **Course title** | Innovation and authenticity for winery products (6 ECTS) |
Specific educational objectives
- type of course: *area caratterizzante*
- the scientific area: Innovation and authenticity in food processing
- the course is part of the common study programme

The course gives a general overview of scientific contents and is designed for acquiring professional skills and knowledge.

Educational objectives
(a) provide an adequate knowledge and critical approach to develop projects related to the production of various types of wine and other winery products, taking into account innovative technologies and the official wine regulations; (b) provide an adequate knowledge of the authenticity aspects of wines and chemical/instrumental approaches to determine it.

Lecturer
Emanuele Boselli, BZ L5.00, emanuele.boselli@unibz.it, +390471017217, https://www.unibz.it/en/faculties/sciencetechnology/academic-staff/person/37607-emanuele-boselli

Edoardo Longo, BZ L5.00, edoardo.longo@unibz.it, +39 0471 017691, https://www.unibz.it/it/faculties/sciencetechnology/academic-staff/person/35783-edoardo-longo

Office hours
before and after the lectures or upon appointment

Teaching assistant (if any)
Dr. Bruno Plasinger
<table>
<thead>
<tr>
<th>Office hours</th>
<th>before and after the lectures or upon appointment</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of topics covered</td>
<td>Elements of basic wine enology: grape berry composition, traditional winemaking techniques, treatments for wine stabilization. Innovative technologies and products: techniques for lowering or replacing chemical additives in wines with natural approaches; alcohol reduction; no/low sulfite wines; vegan wines; high hydrostatic pressures; inert atmospheres and vacuum.; other innovations. Introduction to wine laboratory practices and procedures; basics of wine chemistry; conventional analytical procedures from berry to bottle; innovative approaches for the evaluation of authenticity of wines (for the determination of grape blends, geographical origin, winemaking practices).</td>
</tr>
<tr>
<td>Teaching format</td>
<td>Frontal lectures, labs, projects.</td>
</tr>
<tr>
<td>Learning outcomes</td>
<td>Knowledge and understanding (a) adequate knowledge and understanding about the development of projects related to the production of various types of wine and other winery products, taking into account innovative technologies and the official wine regulation; (b) provide an adequate knowledge of the authenticity aspects of wines and chemical/instrumental approaches to determine it. Applying knowledge and understanding (a) developing the capability of integration of information, both in horizontal way (technological, chemical, biological, and regulatory aspects involved in each innovative processing technology) and in vertical way (reasonable sequence of processes along the innovative wine production chain); (b) capability of carrying out strategies for the introduction of innovative processes in the wine sector; (c) capability of evaluating the potentiality of innovative technologies; (d) capability of applying the right chemical/instrumental technique to assess wine authenticity. Making judgements Capability of identifying the information needed to introduce sustainable innovations and to ensure/evaluate authenticity of wines and winery products with instrumental techniques. Communication skills capability of clearly and exhaustively communicate notions, ideas, problems and technical solutions to interlocutors, either professional or not, representative of the various and specific competencies in the wine supply chain (agronomists, engineers, biologists, chemists, nutritionists, administrators).</td>
</tr>
</tbody>
</table>
Learning skills
To get the learning skills that are necessary to update the winery plants and to obtain wine products with innovative technologies without loss of authenticity and with a good level of autonomy.

| Assessment | Written and project work: written exam with review questions and written project report done in groups |
| Assessment language | English |
| Evaluation criteria and criteria for awarding marks | Successful completion of the examination will lead to grades ranging from 18 to 30 with honors (50% written and 50% project work).
- relevant for written exam: clarity of answers, mastery of language (also with respect to teaching language), ability to summarize, evaluate, and establish relationships between topics;
- relevant for project work: ability to work in a team, creativity, skills in critical thinking, ability to summarize in own words |

| Required readings | Keynotes and scientific papers provided by the lecturers |
Introduction to Wine laboratory practices and procedures, JL Jacobson, Springer |