Course Description - Academic Year 2018/2019

<table>
<thead>
<tr>
<th>Course title</th>
<th>System Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>76006</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF/05</td>
</tr>
<tr>
<td>Degree</td>
<td>European Master in Software Engineering (LM-18)</td>
</tr>
<tr>
<td>Semester</td>
<td>2</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>8</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>48</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>24</td>
</tr>
<tr>
<td>Total exercise hours</td>
<td>--</td>
</tr>
<tr>
<td>Attendance</td>
<td>Recommended especially for the labs.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Students should have a solid mathematical foundation and be familiar with basic programming concepts, data structures and algorithms. These prerequisites are covered in any Bachelor degree in Computer Science.</td>
</tr>
</tbody>
</table>

Specific educational objectives

The course belongs to the type "caratterizzanti – discipline informative"–"Advanced Topic in Software Engineering" (EMSE - ATSE).

The main aim of this module is to provide an introduction to the field of information security. The students learn about the technical as well as the management side of security in information systems. They acquire knowledge about fundamental principles of security and also about practical approaches to securing information systems.

Lecturer

Sven Helmer

Piazza Domenicani 3, Office 2.16, shelmer@inf.unibz.it, 0471 016190

Scientific sector of lecturer

ING-INF/05

Teaching language

English

Office hours

Office 2.16, shelmer@inf.unibz.it, 0471 016190

Lecturing Assistant (if any)

Contact LA

Office hours LA

List of topics

- Cryptography
- Cryptographic Protocols
- Network Attack and Defense
- Administrative Issues
- Security Protocols
- Social Engineering
- Usability
- Risk Assessment

Teaching format

Frontal classroom lecture plus lab sessions
Learning outcomes

Knowledge and understanding
- Know the main methods and techniques for designing, creating, and maintaining software products and services.
- Understand methods of mathematics and of statistics that support Information Technology and its applications.

Applying knowledge and understanding
- Be able to integrate, adapt, and improve organizational and business strategies with Information Technology.
- Be able to design and execute experimental analyses on information systems or their components.

Making judgments
- Must have the ability to independently select the documentation required to keep abreast of the frequent technological innovations in the field by using a wide variety of documentary sources: books, web, magazines.

Communication skills
- Must be able to coordinate the work of a project team and to interact positively with members of the group.

Learning skills
- Must be able to independently keep up to date with developments in the most important areas of Computer Science.

Assessment

- Project work to test knowledge application skills and communication skills, done in small groups who present their work orally
- Written exam with verification questions and questions to test knowledge application skills

Assessment language
English

Assessment typology
Monocratic commission

Evaluation criteria and criteria for awarding marks
- 20% project work
- 80% written examples

Relevant for assessment 1: ability to work in teams, skill in applying knowledge in a practical setting, ability to summarize in own words.

Relevant for assessment 2: clarity of answers, ability to recall principles and methods used in system security, skill in applying knowledge such as testing the security of systems

Required readings

Supplementary readings

Software used
--