COURSE DESCRIPTION – ACADEMIC YEAR 2018/2019

<table>
<thead>
<tr>
<th>Course title</th>
<th>Temporal and Spatial Databases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>72099</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>INF/01</td>
</tr>
<tr>
<td>Degree</td>
<td>Master in Computer Science (LM-18)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>2</td>
</tr>
<tr>
<td>Credits</td>
<td>8</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
<tr>
<td>Total lecturing hours</td>
<td>48</td>
</tr>
<tr>
<td>Total lab hours</td>
<td>24</td>
</tr>
<tr>
<td>Attendance</td>
<td>Not compulsory</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Students should be familiar with basic concepts in databases (including relational databases, SQL, and relational algebra) and algorithms. This material is taught in the following courses: Database Systems, and Data Structures and Algorithms.</td>
</tr>
<tr>
<td>Course page</td>
<td>https://ole.unibz.it/</td>
</tr>
</tbody>
</table>

Specific educational objectives
The course belongs to the type "caratterizzanti – discipline informatiche". Understanding of the basics of temporal and spatial database systems.

Lecturer
Vincenzo Del Fatto and Anton Dignös

Contact

- **Vincenzo Del Fatto:** Piazza Domenicani 3, Room 2.19, vincenzo.delfatto@unibz.it, +39 0471 016255
- **Anton Dignös:** Piazza Domenicani 3, Room 2.19, anton.dignoes@unibz.it, +39 0471 016142

Scientific sector of lecturer
INF/01

Teaching language
English

Office hours
Arrange beforehand by email.

Syllabus
- Spatial Reference Systems and Geographic Data Format: Raster Data, Vector Data
- Modelling Spatial Concepts in Spatial Databases
- Spatial indexes
- Spatial Analysis
- Requirements and motivation for temporal databases
- Time domain, granularity, calendars
- Abstract and concrete temporal data models
- Temporal operators and extensions of SQL

Teaching format
Frontal lectures and labs (exercises). The labs will allow students to get practical experience and apply the concepts learned during the lectures.
Learning outcomes

Knowledge and understanding:
- Know in detail the principles of temporal and spatial database systems and methods for designing and developing temporal and spatial databases.

Applying knowledge and understanding:
- Be able to identify new application requirements and business opportunities in the field of systems based on data and knowledge.

Making judgments
- Be able to identify reasonable work goals and estimate the resources required to achieve the objectives.

Communication skills
- Be able to structure and prepare scientific and technical documentation describing project activities.

Learning skills
- Be able, in the context of a problem-solving activity, to extend even incomplete knowledge taking into account the objective of the project.

Assessment

The assessment of the course consists of two parts:
- a single written exam at the end that covers the entire course (50% of the mark);
- lab assignments which are done during the semester and requires students to solve concrete problems by using methods and technologies taught in the course (50% of the mark).

The written exam consists of a set of open questions and multiple-choice questions, and verifies knowledge and understanding of the methods and techniques learned during the course.

The lab assignments verify whether the student is able to apply the techniques taught in the course to solve concrete problems.

Assessment language

English

Assessment typology

Monocratic

Evaluation criteria and criteria for awarding marks

A positive overall mark for the assignments is a pre-requisite to be admitted to the written exam; there are no other pre-requisites.

Both parts (the written exam and the assignments) must be positive to pass the exam.

The final grade is the average of the assignment mark (50%) and the mark of the written exam (50%).

Criteria for the evaluation of the assignments and written exam: correctness of the solution and presentation of the solution.

Required readings

Online lecture notes

Supplementary readings

| Software used | PostgreSQL with PostGIS, QGIS, PostgreSQL client (psql or pgAdmin) and/or C compiler. |