SYLLABUS COURSE DESCRI PTI ON

COURSE TITLE	Probability Theory and Statistics
COURSE CODE	76210
SCI ENTI FI C SECTOR	MAT/06
DEGREE	Bachelor in Computer Science
SEMESTER	1st
YEAR	2nd
CREDITS	6

TOTAL LECTURI NG	40		
HOURS		20	
TOTAL LAB HOURS	20		
PREREQUISITES	Basic notions of algebra and mathematical analysis		
COURSE PAGE	ole.unibz.it		

SPECI FIC	• Type of course: "affini o intergativi"
EDUCATIONAL	Scientific area: "formazione affine"
OBJ ECTI VES	The course offers an overview of the theory of probability in connection to its use in computer science and the use of statistics in analysing and understanding empirical data.

| | | |
| :--- | :--- | :--- | :--- |
| LECTURER | Rafael Penaloza | |
| SCI ENTI FIC SECTOR | INF/01 | |
| OF THE LECTURER | | |
| TEACHING | English | |
| LANGUAGE | POS 3.05, Wednesday $11.00-13.00$, Rafael.Penaloza@unibz.it | |
| OFFI CE HOURS | | |
| TEACHING | Alisa Kovtunova | |
| ASSISTANT | TBA | |
| OFFICE HOURS | | |

Fakultät für Informatik
Facoltà di Scienze e Tecnologie informatiche
Faculty of Computer Science

LIST OF TOPICS COVERED	- Discrete probability: finite probability spaces, infinite discrete probability spaces, probability, conditional probability, Bayes's theorem, random variables, discrete distributions - Continuum probability: probability spaces, conditional probability, random variables, distributions, expectations and integration - Independence: independence of random variables, variance and covariance, joint distributions, convolution, conditional expectation - Sums of random variables: random variable manipulations, law of large numbers, central limit theorem, the Monte Carlo method - Descriptive statistics and inference: data analysis, parametric inference, normality, non-parametric inference, bootstrap - Statistical models: hypothesis testing, linear statistical models, regression, least square methods
TEACHI NG FORMAT	ures: chalk and talk; supplemental e-learning activities, Lab: interactive group work

LEARNI NG	Knowledge and understanding OUTCOMES
Applying knowledge and understinding Be able to apply the tools of statistics and probability theory to solve information technology issues;	
Making judgments Ability to discern between various probability models and capability to find appropriate models for a given application;	
Learning skills Have developed learning capabilities to pursue further studies in statistics and probability theory.	

ASSESSMENT	Written final exam with unseen questions about the material covered in the course. The aim of the written exam is to check to which degree students have mastered the following learning outcomes: 1) Knowledge and understanding, 2) applying knowledge and understanding, 3) making judgment.
ASSESSMENT English LANGUAGE	
EVALUATI ON CRITERIA AND CRITERIA FOR AWARDI NG MARKS	Correctness and clarity of the answers.

REQUI RED	C. M. Grinstead and J. L. Snell. Introduction to Probability. American READINGS Mathematical Society, 1997. S. . Ross. Introduction to probability and statistics for engineers and Scientists. Elsevier/Academic Press, Amsterdam; Boston, 2004. OCLC: 123752914.
SUPPLEMENTARY J. Haigh. Probability models. Springer, London, 2013. OCLC: 909978104. READINGS	

	W. N. Venables, D. M. Smith, and the R Core Team. An Introduction to R, version 3.3.2 edition, 10 2016. Notes on R: A Programming Environment for Data Analysis and Graphics.
SOFTWARE USED	R as a recommended software, but not required for exam.

