

Syllabus Course description

Course title	Bioenergy
Course code	45535
Scientific sector	ING-IND/24
Degree	Master Energy Engineering
Semester	2
Year	2
Academic year	2017/2018
Credits	6
Modular	no

Total lecturing hours	50
Total lab hours	10
Total exercise hours	
Attendance	
Prerequisites	Capability to write mass and energy balances
Course page	

chemical and energy industrial sectors. The student at the end of the course will be capable to design a bio-energy thermo-chemical conversion process.	Specific educational objectives	The student at the end of the course will be capable to
--	------------------------------------	---

Lecturer	Luca Fiori
Scientific sector of the lecturer	ING-IND/24
Teaching language	English
Office hours	The lecturer is available to meet students along the whole week, to be agreed through e-mail appointment.
Teaching assistant (if any)	
Office hours	
List of topics covered	Biomass: Properties and types

Freie Universität Bozen unibz Libera Università di Bolzano Università Liedia de Bulsan

	Properties: proximate and ultimate analysis, calorific value, density, moisture content
	density, moisture content.
	• Type 1: ligno-cellulosic, starchy, sugar, oilseeds.
	Type 2: municipal residual waste, organic waste, sewage
	sludge, manure.Type 3: biofuels from biomass conversion processes
	(solid: biochar; liquids: bioethanol and biodiesel; gaseous:
	biogas and syngas).
	Processes for biomass conversion
	Introduction to thermochemical, biochemical, and
	mechanical processes.
	Types of reactors, chemical equilibrium and reaction
	kinetics.
	Thermochemical conversion (pyrolysis, gasification,
	reforming, combustion).
	Biochemical conversion (anaerobic digestion,
	fermentation).
	Oil extraction and esterification.
	 Pretreatment of biomass (pelleting; chipping; biodrying,
	etc.).
	Management of solids / liquids / gaseous biomass process
	waste.
	Generation of heat and power
	Heat generation from biomass boilers and stoves
	(operation, sizing criteria).
	Power generation from biofuels: engines (ICE), turbines
	(steam, ORC, gas) and fuel cells.
	 Case studies: gasification plant + ICE.
	Cogeneration.
	 Costs of generating heat and power from biomass.
	Process modeling and simulation with the commercial
	software ASPEN PLUS [®]
	 Methane combustion and methane steam reforming.
	 Distillation of a water-methanol-ethanol stream.
	Gasification of biomass.
	Project of biomass plants
	• Design of a thermal plant fueled by wood chips P=70 kW.
	Cogeneration plant (ICE) fueled by vegetable oil P=1
	MWe.
	Anaerobic digestion plant for organic waste P=999 kWe.
Teaching format	Lectures, exercises in class and in computing labs.

Learning outcomes	Knowledge and understanding: The student will be aware form a technical point of view of energy plants where biomasses and organic wastes are used.
	Applying Knowledge and understanding:
	The student will be capable to apply the acquired
	knowledge to design biomass energy plants and to
	evaluate their performances.
	Making judgments:
	The student will became capable to judge the different
	options available given the nature of the feedstock

Freie Universität Bozen unibz Libera Università di Bolzano

-

Università Liedia de Bulsan

	available (kind of biomass, kind of organic waste) and the technological opportunities to valorize it as bioenergy. Communication skills: The student will be capable to efficiently communicate concerning bio-energy options, processes and plants. Learning skills: The student will be taught that significant bioenergy process advancements are in progress, and that he/she should keep him/herself updated on the last technological outcomes that face the bio-energy market.
Assessment	The exam consists in an oral examination and an optional examination regarding the project of an energy process by ASPEN PLUS [®] .
Assessment language	English
Evaluation criteria and criteria for awarding marks	Capability to address practical and theoretical issues related to bio-energy processes and plants. Capability to solve simple and complex bio-energy problems. Capability to design bio-energy processes by ASPEN PLUS [®] .

Required readings	Lecture notes
Supplementary readings	Biomass for renewable energy, fuels, and chemicals. D.L.
	Klass, Academic Press.
	Sistemi a biomasse: progettazione e valutazione
	economica. E. Bocci, A. Caffarelli, M. Villarini, A. D'Amato,
	Maggioli Editore.