SYLLABUS

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>Database System</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>75011</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
<td>ING-INF/01</td>
</tr>
<tr>
<td>DEGREE</td>
<td>Bachelor in Computer Science and Engineering</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>1st Semester</td>
</tr>
<tr>
<td>YEAR</td>
<td>2nd year</td>
</tr>
<tr>
<td>CREDITS</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
<td>48</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
<td>24</td>
</tr>
</tbody>
</table>

PREREQUISITES

Students should have a solid mathematical foundation and be familiar with the basic programming concepts, data structures and algorithms. These prerequisites are covered in the following courses: Analysis, Introduction to Programming, Programming Project, and Data Structures and Algorithms.

COURSE PAGE

https://ole.unibz.it/
http://www.inf.unibz.it/dis/teaching/DBS/

SPECIFIC EDUCATIONAL OBJECTIVES

- Type of course: "caratterizzanti" for L-31 and for L-8
- Scientific area: “discipline informatiche” for L-31 and “formazione interdisciplinare” for L-8

Students attending this course will be able to model and design database schemas from the conceptual design down to the physical design. They will also be able to insert, modify, and query data stored in database systems. Additionally, they also gain a deeper understanding of techniques and methods used in database systems to keep the data safe and consistent.

LECTURER

Sven Helmer, http://www.inf.unibz.it/~shelmer/

SCIENTIFIC SECTOR OF THE LECTURER

ING-INF/05

TEACHING LANGUAGE

English

OFFICE HOURS

POS 2.16, shelmer@inf.unibz.it, 0471 016190

TEACHING ASSISTANT

Panagiotis Symeonidis
Marco Montali

OFFICE HOURS

TBA
List of Topics Covered
- Data Modeling
- Relational Model and SQL
- Database Design Theory
- Physical Data Storage
- Query Processing
- Recovery
- Multi-User Synchronization
- Database Applications

Teaching Format
Frontal classroom lecture plus exercises

Learning Outcomes

Knowledge and understanding
- know in detail the principles of relational database systems and methods for designing and developing databases;

Applying knowledge and understanding
- be able to develop and query relational databases;
- be able to apply the own knowledge to the analysis, design, development and testing of information systems which satisfy given requirements;

Ability to make judgments
- be able to collect useful data and to judge information systems and their applicability;
- be able to work autonomously according to the own level of knowledge;

Communication skills
- be able to work in teams to implement software systems;

Ability to learn
- have acquired learning capabilities that enable them to carry out project activities in companies, public institutions or in distributed development communities;
- be able to learn the innovative features of state-of-the-art technologies and information systems;

Assessment
- Project work to test knowledge application skills and communication skills, done in small groups who present their work orally
- Written exam with verification questions and questions to test knowledge application skills

Assessment Language
English

Evaluation Criteria and Criteria for Awarding Marks

<table>
<thead>
<tr>
<th>20% project work</th>
<th>80% written examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>relevant for assessment 1: ability to work in teams, skill in applying knowledge in a practical setting, ability to summarize in own words</td>
<td>relevant for assessment 2: clarity of answers, ability to recall principles and methods used in database systems, skill in applying knowledge such as developing and querying databases</td>
</tr>
</tbody>
</table>
REQUIRED READINGS

SUPPLEMENTARY READINGS

SOFTWARE USED
-