Syllabus
Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Industrial Installations and Operational Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42142</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-IND/17</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial and Mechanical Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>3</td>
</tr>
<tr>
<td>Academic year</td>
<td>2017 - 2018</td>
</tr>
<tr>
<td>Credits</td>
<td>10</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

Total lecturing hours	64
Total lab hours	
Total exercise hours	30
Attendance	Required
Prerequisites	Students attending this course should have already passed the exam of Production Systems and Industrial Logistics.

Course page

Specific educational objectives
The course belongs to one of the basics in the class: L-9 Industrial Engineering. It aims to teach both scientific foundations and practical methods.

The course follows the structure of a common plant life cycle in industrial production. At the beginning, students are introduced to different production types and requisites. Different methodologies for analyzing and optimizing industrial processes are explained. Next, students are introduced to well-known methodologies for layout and space planning of a factory. The fourth part of the lecture covers fundamentals in investment decisions in an industrial environment. The course concludes with common methodologies used in plant and equipment maintenance.

Lecturer
Patrick Dallasega, patrick.dallasega@unibz.it
Ivan Ferretti, ivan.ferretti@unibz.it

Scientific sector of the lecturer
ING-IND/17

Teaching language
English

Office hours
30

Office assistant (if any)

List of topics covered
1. Introduction
 a) Craftsmanship production
2. The operation system „Factory“ in ETO/MTO
 a) Definitions and fundamentals
 b) Productivity, efficiency and efficacy
 c) Classification of production systems (Wortmann)
 d) Production types and requisites
 e) The Little’s law
 f) Pull control mechanisms (Kanban vs. CONWIP)
 g) Process flow analysis (VSD, VSE, ASME, BPMN)
 h) Case study

3. Layout and space planning
 a) The layout process and the phases
 b) The material flow (ideal planning)
 c) Process/Assembly sheets
 d) Hollier method
 e) Space, machines and workforce requirements
 f) Design methods (Standard Spaces, Sankey Diagram, Closeness-Relationship Diagram)
 g) Innovative software modules for layout planning
 h) Case studies

4. Investment decisions
 a) Depreciation
 b) Discounted cash flow
 c) Net present value method
 d) Internal rate of return method
 e) Payback method

5. Plant and equipment maintenance
 a) Introduction to reliability concepts
 b) Failure rate and reliability analytical formulation
 c) Reliability Block Diagrams
 d) Reliability Centred Maintenance
 e) The KPI for Reliability and Maintenance (MTBF, MTTR, Availability)
 f) Methodologies and tools: FMECA, Fault Tree Analysis, Root Cause Analysis
 g) Modern Maintenance: the TPM approach
 h) The analysis of losses and the OEE
 i) Introduction to the Computer Managed Maintenance Systems (CMMS)
 j) Sustainable and green factory (regenerative Energien, urban production)
 k) Case studies

6. Industrial simulation
 a) Introduction simulation processes
 b) Notes on random number generation
c) The Monte Carlo method
d) Discrete event and agent based modeling

7. Exercises
a) Case study Layout Planning writing desk IKEA
b) Excursion to a local company

Teaching format
Power Point presentations will be given to the students in pdf format before each single lecture. During the exercise part, a case study will be developed in class. Furthermore, an excursion to a local company takes place where practical applications will be explained.

Learning outcomes
Basic knowledge
The Engineering students are able to analyze different production types and requisites. Based on this understanding, the student is able to plan and design the factory layout. To choose the appropriate plant, the student is familiar in most common investment decisions methodologies. To operate appropriately the machine pool of a factory, the student knows the most advanced methodologies for plant and equipment maintenance.

Practical application
By explaining exercises during the lecture hours and by working out the case study, the student will be able to use theoretical concepts in practice.

Soft skills
During the exercise part the case study is performed in collaboration. As a result, students learn to interact in a project team. At the end of the case study students will present the achieved results improving so their communicative skills.

Assessment
Final assessment is done with a written examination.

Assessment language
English

Evaluation criteria and criteria for awarding marks
The final grade is calculated from the results of the written exam. The theoretical part counts 65% and the exercise part counts 35% of the final grade.

Required readings
Lecture notes and documents for exercise are available on the reserve collections.

Supplementary readings