Syllabus

Course description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Introduction to Information Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42144</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF/05</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial Mechanical Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>I</td>
</tr>
<tr>
<td>Academic Year</td>
<td>2017-2018</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>no</td>
</tr>
</tbody>
</table>

Total lecturing hours	36 hrs
Total lab hours	36 hrs
Total exercise hours	

Attendance

Attendance at assigned laboratory sections is required; lecture attendance is very strongly recommended.

Prerequisites

Registration for the course of Bachelor in Industrial and Mechanical Engineering

Course page

https://next.unibz.it/en/faculties/sciencetechnology/bachelor-industrial-mechanical-engineering/course-offering/

Specific educational objectives

The course will provide an introduction to basic concepts in information and computer science (hardware and software), particularly those topics of fundamental importance to Industrial and Mechanical Engineering.

Lecturer

Prof. Karl von Ellenrieder Facoltà di Scienze e Tecnologie
Building K, Room 2.08
Tel.: +39 0471 017172
E-mail: karl.vonellenrieder@unibz.it
Web:

Scientific sector of the lecturer

ING-INF/04 - Automatica

Teaching language

English

Office hours

As listed on Cockpit or by appointment

Teaching assistant (if any)

Dr. Lenarduzzi, Valentina – Valentina.Lenarduzzi@unibz.it

Office hours

As listed on Cockpit or by appointment

List of topics covered

The course covers the following topics:

1. Basic programming syntax and structure in C
2. Functions
3. Conditional control structures
4. Arithmetic, comparison and Boolean operators
Learning outcomes (ILOs)

Knowledge and understanding

1. Basic software design procedures.
2. How to develop simple microprocessor programs.
3. How to interface a microprocessor with simple sensors and actuators.
4. How to implement simple electro-mechanical systems.

Applying knowledge and understanding

5. Reports for hands-on laboratory exercises that complement the lectures will require you to devise and sustain arguments.

Making judgements

6. On the choice of the right tools such as data types, programming approaches, or electrical components. The labs will also require you to gather and interpret relevant data.

Communication skills

7. Lab reports will require you to present information, ideas, problems and solutions in clear and simple language.

Learning Skills

8. Basic foundations for further study in more advanced courses in Industrial and Mechanical Engineering.

Assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>24 hours total</td>
<td>1-7</td>
</tr>
</tbody>
</table>

Summative assessment

<table>
<thead>
<tr>
<th>Form</th>
<th>%</th>
<th>Length / duration</th>
<th>ILOs assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Exam</td>
<td>40</td>
<td>4 hours</td>
<td>1-4, 6, 8</td>
</tr>
<tr>
<td>Assessment language</td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Evaluation criteria and criteria for awarding marks** | Labs: Completeness and correctness of reports; quality of writing; level of observation of physical processes
Written Final Exam: Completeness and correctness of answers.
Students are required to receive an overall grade of greater than 60/100 points in order to pass the course. |
Hardcopies available in library reserves, or can be downloaded here – http://www.introtoarduino.com/downloads/IntroArduinoBook.pdf |