

Syllabus Descrizione del corso

Titolo del corso	Analisi Matematica I
Codice del corso	42123
Settore scientifico disciplinare del corso	MAT/05
Corso di studio	Corso di Laurea in Ingegneria Industriale Meccanica
Semestre	1°
Anno del corso	1°
Anno accademico	2017-2018
Crediti formativi	10
Modulare	No

Numero totale di ore di lezione	64
Numero totale di ore di laboratorio	
Numero totale di ore di esercitazioni	33
Frequenza	
Corsi propedeutici	Precorso di matematica
Sito web del corso	https://ole.unibz.it/course/index.php?categoryid=68

Obiettivi formativi specifici del corso	Il corso fa parte delle Attività Formative di Base ed in particolare dell'ambito disciplinare "Matematica, Informatica e Statistica". Il corso è obbligatorio.
	Il corso è dedicato all'introduzione delle nozioni di base dell'analisi matematica, in particolare del calcolo infinitesimale, differenziale ed integrale per funzioni di una variabile reale. L'obiettivo formativo del corso non è limitato all'acquisizione delle relative tecniche di calcolo, ma mira ad una piena comprensione dei concetti matematici da cui esse derivano, condizione che risulta fondamentale per la formazione di una competenza nell'applicazione delle nozioni acquisite ad altri ambiti disciplinari e all'uso critico degli strumenti introdotti.

Docente	Prof.ssa Laura Levaggi, Palazzo K, Ufficio 2.14, e-mail: laura.levaggi@unibz.it , tel. 0471 017131
Settore scientifico disciplinare del docente	MAT/05
Lingua ufficiale del corso	Italiano
Orario di ricevimento	Da lunedì a venerdì su appuntamento.
Collaboratore didattico (se previsto)	Dr. Francesco Bigolin, <u>Francesco.Bigolin@unibz.it</u>
Orario di ricevimento	Su appuntamento

Lista degli argomenti Brevi richiami sulla teoria degli insiemi, gli insiemi numerici e le proprietà dei numeri reali. trattati 2. Funzioni reali di variabile reale: funzioni elementari, grafici e operazioni sui grafici, composizione ed inversione di funzioni. 3. Limiti e successioni con applicazioni alla convergenza delle serie. 4. Limiti e continuità delle funzioni. 5. Funzioni infinite ed infinitesime: simboli di Landau e ordini di convergenza. 6. Calcolo differenziale e studio di funzione. 7. Sviluppi di Taylor. 8. Calcolo integrale. 9. Uso del software di calcolo simbolico Maple. Il corso si sviluppa in una serie di lezioni frontali, dedicate Attività didattiche previste sia alla presentazione degli argomenti di teoria, che alla loro applicazione in forma di esercizi. Una parte delle ore di esercitazione sarà riservata all'apprendimento dell'uso di un software di calcolo simbolico. La presentazione degli argomenti sarà svolta alla lavagna e supportata dall'ausilio di software di calcolo e di visualizzazione grafica. Per la parte teorica si userà come riferimento il testo riportato in bibliografia. Durante il corso saranno inoltre proposti fogli di esercizi agli studenti. Ogni attività svolta nel corso verrà documentata sul sito web. In supporto al corso saranno inoltre organizzate ulteriori

Risultati di apprendimento attesi

Intended Learning Outcomes (ILO)

Conoscenza e comprensione

 Conoscenza e comprensione degli aspetti metodologici ed operativi della matematica, in particolare dei concetti generali e degli strumenti di base del calcolo infinitesimale, differenziale ed integrale per funzioni reali di una variabile reale.

lezioni dedicate agli esercizi, tenute da un assistente.

Capacità di applicare conoscenza e comprensione

- Capacità di applicare ed usare strumenti matematici nella descrizione di problemi ingegneristici.
- 3. Capacità di un uso non meccanico ma critico delle tecniche di calcolo.

Autonomia di giudizio

 Capacità di valutare le caratteristiche del problema da risolvere, ottenerne un corretto inquadramento teorico e operare la scelta del metodo più consono alla sua soluzione.

Abilità comunicative 5. Capacità di un uso corretto del linguaggio matematico.
Capacità di apprendimento 6. Abilità nell'applicare un ragionamento di tipo analitico nell'approccio alla risoluzione dei problemi.

Metodo d'esame	L'esame finale consiste in:			
			itta composta da eserci	
	•	•	nsione dei concetti teori	
	1	•	ne delle relative tecnich discussione della prova	
Lingua dell'esame	- la succ	cssiva	discussione della prova	correcta.
Criteri di misurazione e	Il voto finale a	attrihuit		
criteri di misurazione e			ono valutate la chiarezz	a nello
voto	:		e, l'appropriatezza della	
	i		problemi e la precisione	•
	•		ali errori e/o omissioni s	
	correzione ver	ranno	poi discussi con lo stude	ente.
	'			
	<u>Valutazione</u>	e form	ativa	
	Forma	Lur	nghezza/Durata	ILO
				valutati
	Esercizi in	4 x	60 minuti	1-6
	classe			
	Valutazione sommativa			
	Forma	%	Lunghezza/Durat	a ILO
				valutati
	Esame	60%	6 esercizi (120	1, 2, 3
	scritto -		minuti)	
	prima parte Esame	050/	,	2) 0 4 (
	scritto –	35%	2 esercizi (60 minuti	i) 3, 4, 6
	seconda			
	parte			
	Discussione	5%	5-10 minuti	5, 6
	della prova			
	scritta			

Bibliografia fondamentale	C. Canuto, A. Tabacco "Analisi Matematica I", Springer Verlag Italia, 2014. (Print: ISBN: 88-470-5722-1 Online: <u>Ebook Springer</u>)
Bibliografia consigliata	Altri riferimenti bibliografici per approfondimenti o esercizi (consultabili nella biblioteca dell'Università) potranno essere suggeriti durante il corso, anche in lingue diverse da quella ufficiale. In ogni caso lo studente potrà fare riferimento al sito del corso per ogni informazione a riguardo.

Syllabus Course description

Course title	Mathematical Analysis I
Course code	42123
Scientific sector	MAT/05
Degree	Bachelor in Industrial and Mechanical Engineering
Semester	1 st
Year	1 st
Academic year	2017-2018
Credits	10
Modular	No

Total lecturing hours	64
Total lab hours	
Total exercise hours	33
Attendance	
Prerequisites	Preparatory course in Mathematics
Course page	https://ole.unibz.it/course/index.php?categoryid=68

Specific educational objectives	The course is part of basic didactic activities and in particular in the disciplinary sector "Mathematics, Informatics and Statistics". The course is compulsory.
	It is and introductory course, devoted to the introduction of basic notions of mathematical analysis, in particular of infinitesimal, differential and integral calculus for real functions of one real variable. The objective is not only to convey a set of notions and tools, the aim is also to acquire a deep understanding of the mathematical concepts from which they are derived. This is fundamental in order to be able to use the learned techniques in a rational way and to apply them to other technical and scientific subjects.

Lecturer	Prof. Laura Levaggi, Palazzo K, Ufficio 2.14, e-mail: laura.levaggi@unibz.it, tel. 0471 017131	
Scientific sector of the lecturer	MAT/05	
Teaching language	Italian	
Office hours	Monday to Friday by appointment.	
Teaching assistant (if any)	Dr. Francesco Bigolin, Francesco.Bigolin@unibz.it	
Office hours	By appointment	
List of topics covered	 Elements of set theory, number sets and properties of real numbers. Real functions of one real variable: elementary functions, graphs and operations on graphs, composition and inversion. Limits and sequences with applications to the convergence of series. 	

	4. Limits and continuity of functions.
	5. Infinite and infinitesimal functions: Landau symbols
	and rate of convergence.
	6. Differential calculus and study of a function's graph.
	· · · · · · · · · · · · · · · · · · ·
	7. Taylor expansions.
	8. Integral calculus.
	Use of the symbolic calculus software Maple
Teaching format	The course is made up of a series of frontal lectures, both
_	devoted to the presentation of theoretical concepts and to
	their application in exercises. Part of the exercise hours will
	be dedicated to the use of a symbolic calculus software and
	will therefore take place in the informatics lab.
	Topics will be presented on the blackboard and
	explanations will be supported by the use of software, both
	i ·
	in analysing calculations and for the graphical visualization.
	The reference textbook for theory is cited in the
	bibliography. During the course lists of exercises will be
	made available to the students. Each of the activities
	carried out during the course's hours will be documented on
	the web site.
	Extra exercise hours will be scheduled to help students
	practice the application of calculus techniques. These
	lectures will be given by a teaching assistant.
L	i lectures will be given by a teaching assistant.

Learning outcomes	Knowledge and understanding 1. Knowledge of the fundamental concepts and basic tools of infinitesimal, differential and integral calculus for real functions of one real variable.
	 Applying knowledge and understanding 2. Ability to apply and use mathematical tools for the description of engineering problems. 3. Mastering of a methodology of non-mechanical, rational application of calculus techniques.
	Making judgements 4. Ability to evaluate the characteristics of the problem to be solved, set it in the correct theoretical framework and subsequently choose the most suitable method to get to its solution.
	Communication skills 5. Mastery of the use of the specific mathematical lexicon.
	Ability to learn 6. Capability to a rational, analytical approach in handling problems.

Assessment	The final exam consists of: - a written examination, with exercises about the topics covered during the course, that aims at verifying the understanding of the theory and the ability in using the relevant calculus techniques; - the subsequent discussion of the corrected test.			
Assessment language Evaluation criteria and criteria for awarding marks	Italian A single final mark will be given. For the written examination will be evaluated: the clarity of the solution scheme, the appropriateness of the methodology chosen in solving the problems and the correctness of its application. Any errors and omissions underlined during the correction will be discussed with the student. Formative assessment			
	Form	Length /duration ILOs		
	In class exercises	4 x 60 minutes		1-6
	Summative assessment			
	Form	%	Length /duration	ILOs assessed
	Written exam – first part	60%	6 exercises (120 minutes)	2, 3, 4
	Written exam - second part	35%	2 exercises (60 minutes)	3, 4, 6
	Discussion of the written exam	25%	5-10 minutes	5, 6

Required readings	Textbook: C. Canuto, A. Tabacco "Analisi Matematica I", Springer Verlag Italia, 2014. (Print: ISBN: 88-470-5722-1 Online: Ebook Springer) An english version of the text is also available: C. Canuto, A. Tabacco, "Mathematical Analysis I", Springer International Publisher, 2015. (Print: ISBN: 978-3-319-12771-2 Online: Springer Ebook)
Supplementary readings	Other bibliographic references for exercises or further study (available at the University library) may be suggested during the course, also in languages different from the official one. The student can refer to the web site of the course for any related information.