SYLLABUS

COURSE DESCRIPTION

<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>Programming Paradigms</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>75038 (BSc in Computer Science and Engineering DM 270) / 70138 (BSc in Applied Computer Science DM 509)</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
<td>INF/01</td>
</tr>
<tr>
<td>DEGREE</td>
<td>Bachelor in Computer Science and Engineering</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>YEAR</td>
<td>2nd</td>
</tr>
<tr>
<td>CREDITS</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
<td>36</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
<td>18</td>
</tr>
<tr>
<td>PREREQUISITES</td>
<td>Students should have a solid mathematical foundation, good programming skills in an imperative or object-oriented language and be familiar with basic data structures and algorithms. These prerequisites are covered in the following courses: Analysis, Introduction to Programming, Programming Project, and Data Structures and Algorithms</td>
</tr>
</tbody>
</table>

SPECIFIC EDUCATIONAL OBJECTIVES

- Type of course: “caratterizzanti” for L-31 and “affini o integrativi” for L-08
- Scientific area: “discipline informatiche” for L-31 and “formazione interdisciplinare” for L-8

Students will learn the key concepts and structures of the most popular programming paradigms. They will practice to write small programs in different programming languages. Upon completion of the course, students shall also be able to judge strengths and weaknesses of different programming paradigms/languages, in particular in the context of specific application domains.

LECTURER

Johann Gamper, office POS 2.15, Faculty of Computer Science, Piazza Domenicani 3, johann.gamper@unibz.it, +39 0471 016140

SCIENTIFIC SECTOR OF THE LECTURER

INF/01

TEACHING LANGUAGE

English

OFFICE HOURS

Monday, 13:00-14:00, office POS 2.15, or email arrangement

TEACHING ASSISTANT

Theodoros Chondorgiannis

OFFICE HOURS

Wednesday, 14:00-16:00, office POS 2.12, or email arrangement theodoros.chondorgiannis@unibz.it

LIST OF TOPICS COVERED

- Overview of programming paradigms
- Imperative paradigm
- Functional paradigm
TEACHING FORMAT
Frontal lectures and labs (exercises). In the frontal lectures, the basic concepts are introduced and explained together with some examples. In the labs, the students gain practical experience in solving problems using different programming languages. They apply the concepts learned during the lectures by writing small and medium sized programs.

LEARNING OUTCOMES

Knowledge and understanding
- Know various programming paradigms and languages.

Applying knowledge and understanding
- Be able to develop small and medium size programs using different programming languages and paradigms.

Ability to make judgments
- Be able to evaluate strengths and weaknesses of different programming languages in specific application contexts.

Ability to learn
- Have developed learning capabilities to pursue further studies with a high degree of autonomy.

ASSESSMENT
The first part verifies the ability to solve problems by developing small computer programs in different programming languages. The second part verifies the understanding of key concepts of different programming paradigms and languages.

ASSESSMENT LANGUAGE
English

EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS
The assessment of the course consists of a single written exam at the end that covers the whole course: 80% of the exam is to write small programs, at least one in each of the four programming languages covered in the course; 20% are questions about basic concepts.

Criteria for the evaluation of the exam: correctness and clarity of programs/answers.

REQUIRED READINGS
Lecture notes available at the course page

SUPPLEMENTARY READINGS
- Bruce A. Tate: Seven Languages in Seven Weeks Pragmatic Bookshelf, 2010 (recommended!)

SOFTWARE USED
- Ruby
- Prolog
- Erlang
- Haskell