<table>
<thead>
<tr>
<th>COURSE TITLE</th>
<th>Empirical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE CODE</td>
<td>75012</td>
</tr>
<tr>
<td>SCIENTIFIC SECTOR</td>
<td>SECS-S/01</td>
</tr>
<tr>
<td>DEGREE</td>
<td>Bachelor in Computer Science and Engineering</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>YEAR</td>
<td>2nd year</td>
</tr>
<tr>
<td>CREDITS</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL LECTURING HOURS</td>
<td>36</td>
</tr>
<tr>
<td>TOTAL LAB HOURS</td>
<td>18</td>
</tr>
<tr>
<td>PREREQUISITES</td>
<td>Discrete Mathematics and Logics, Analysis</td>
</tr>
<tr>
<td>COURSE PAGE</td>
<td>https://ole.unibz.it/</td>
</tr>
</tbody>
</table>

Specific Educational Objectives
- Type of course: “affini o integrativi” for L-31 and L-08
- Scientific area: “formazione affine” for L-31 and for L-8

The course offers an overview of the theory of probability in connection to its use in computer science and the use of statistics in assessing empirical data.

LECTURER
Omar Lakkis

SCIENTIFIC SECTOR OF THE LECTURER
MAT-05

TEACHING LANGUAGE
English

OFFICE HOURS
office: POS 3.09, email: omar.lakkis@unibz.it, phone: +39 0471 016186

TEACHING ASSISTANT
Alisa Kovtunova: Alisa.Kovtunova@unibz.it

OFFICE HOURS
Tuesdays, 14:30-16:00; office POS 2.02, Faculty of Computer Science, Piazza Domenicani 3
List of Topics Covered

- Introduction to probability
- Descriptive statistics – exploratory data analysis
- Parametric Inference – testing for normality
- Nonparametric Inference – bootstrap, nonparametric test
- Hypothesis Testing
- Linear regression

Teaching Format
Direct lecture room contact, with use of visual aids such as chalk board and computer projected slides.

Learning Outcomes

Knowledge and understanding
- Language of probability and probabilistic modelling
- Theoretical and practical, including computational, methods of parametric, linear and non-parametric statistics

Applying knowledge and understanding
- Understanding and ability to use Monte Carlo methods for computer simulation (using “R”) and quantification of uncertainty
- Understanding and ability to use standard statistical methods, regression, linear models, other parametric models and non-parametric models in practical situations (based on the computing language “R”)

Making judgments
- Ability to discern between various probability models and capability to find appropriate model for a given application
- Interpretation of statistics and ability to analyse statistical data

Communication skills
- Written communication of arguments involving randomness and uncertainty to experts and non-experts
- Ability to transfer knowledge from mathematical probability and statistics to the computer science and wider audiences

Learning skills
- Ability to read and interpret current literature using probabilistic and statistical language
- Ability to acquire further theoretical knowledge and develop new computational techniques involving probability or statistics

Assessment

- Final Exam

Assessment Language

- English

Evaluation Criteria and Criteria for Awarding Marks

- Relevant for assessment 1: clarity of answers, mastery of language (also with respect to teaching language), ability to summarize, evaluate, and establish relationships between topics; critical interpretation of results and connection to applications

Required Readings

3. W. N. Venables, D. M. Smith, and the R Core Team. An Introduction to...
<table>
<thead>
<tr>
<th>SOFTWARE USED</th>
<th><code>R cs-tech@inf.unibz.it</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPPLEMENTARY READINGS</td>
<td>TBA</td>
</tr>
</tbody>
</table>