Syllabus

Course Description

<table>
<thead>
<tr>
<th>Course title</th>
<th>Introduction to Information Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>42144</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>ING-INF/05</td>
</tr>
<tr>
<td>Degree</td>
<td>Bachelor in Industrial and Mechanical Engineering</td>
</tr>
<tr>
<td>Semester</td>
<td>I</td>
</tr>
<tr>
<td>Year</td>
<td>I</td>
</tr>
<tr>
<td>Academic year</td>
<td>2016-2017</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total lecturing hours</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lab hours</td>
<td>24</td>
</tr>
<tr>
<td>Total exercise hours</td>
<td></td>
</tr>
</tbody>
</table>

- **Attendance**: Attendance at assigned laboratory sections is required; lecture attendance is very strongly recommended.
- **Prerequisites**: Registration for the course of Bachelor in Industrial and Mechanical Engineering

Course page http://www.unibz.it/en/sciencetechnology/progs/bachelor/industrial/courses/default.html

Specific educational objectives
The course will provide an introduction to basic concepts in information and computer science (hardware and software), particularly those topics of fundamental importance to Industrial and Mechanical Engineering.

Lecturer
Prof. Karl von Ellenrieder
Facoltà di Scienze e Tecnologie
Building K, Room 2.08
Tel.: +39 0471 017172
E-mail: karl.vonellenrieder@unibz.it
Web: https://next.unibz.it/en/faculties/sciencetechnology/academic-staff/person/37038-karl-dietrich-von-ellenrieder

Scientific sector of the lecturers
ING-INF/04 - Automatica

Teaching language
English

Office hours
16:30-17:30 Wednesday and Thursday

List of topics covered
- Basic programming syntax and structure in C
- Functions
- Conditional control structures
- Arithmetic, comparison and Boolean operators
- Pointers and addressing
- Data types
- Interrupts
- Simple electronic circuits

Teaching format
Classroom lectures and laboratory exercises
Learning outcomes

Knowledge and understanding

At the end of the course, students will understand:
• basic software design procedures
• how to develop simple microprocessor programs
• how to interface a microprocessor with simple sensors and actuators
• how to implement simple electro-mechanical systems

Applying knowledge and understanding: through hands-on laboratory exercises that complement the lectures.

Making judgments: on the choice of the right tools such as data types, programming approaches, or electrical components.

Communication skills: presenting and discussing solutions to selected laboratory problems.

Learning skills: basic foundations for more advanced courses in Industrial and Mechanical Engineering.

Assessment	Laboratory exercises (60%), written final exam (40%)
Assessment language	English
Evaluation criteria and criteria for awarding marks	Criteria for the evaluation of the written exam and laboratory exercises: completeness and correctness of answers. Students are required to receive an overall grade of higher than 60/100 points in order to pass the course.

Required readings

Hardcopies available in library reserves, or can be downloaded here – http://www.introtoarduino.com/downloads/IntroArduinoBook.pdf

Supplementary readings