Course Description - Academic Year 2016/2017

<table>
<thead>
<tr>
<th>Course title</th>
<th>Requirements and Design of Software Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course code</td>
<td>76002</td>
</tr>
<tr>
<td>Scientific sector</td>
<td>INF/01</td>
</tr>
<tr>
<td>Degree</td>
<td>European Master in Software Engineering (LM-18)</td>
</tr>
<tr>
<td>Semester</td>
<td>1</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
</tr>
<tr>
<td>Credits</td>
<td>8</td>
</tr>
<tr>
<td>Modular</td>
<td>No</td>
</tr>
</tbody>
</table>

Total lecturing hours	48
Total lab hours	--
Total exercise hours	24
Attendance	Not compulsory
Prerequisites	Basic courses on Software Engineering and Data Bases, familiarity with UML modeling and Object-Oriented development
Course page	https://ole.unibz.it

Specific educational objectives

The course belongs to the type "caratterizzanti - discipline informatiche" (EMSE - RDSS 8). The course objective is to familiarize students with tools and techniques to acquire and analyze software requirements, and to define and design a software system. Emphasis is given to traceability of requirements to architecture, to justification of design decisions based on collected requirements, to consequences of design decisions.

Students will acquire skills and competencies resulting from the conception, negotiation, documentation and maintenance of software requirements in a specific domain and environment. Requirements analysis aims at reviewing, assessing, prioritizing, and balancing the software requirements by developing technical specifications for building a system that will meet the needs of the stakeholders. Design of software systems aims at identifying or building software components that define the characteristics and quality of a system. The students are exposed to problem-solving techniques that allow the synthesis of software solutions satisfying the requirements of the system.

Lecturer

Gabriella Dodero

Contact
Piazza Domenicani 3, Room 2.18, gabriella.dodero@unibz.it, 0471-016136 (answering machine when out of office)

Scientific sector of lecturer
INF/01

Teaching language
English

Office hours
During the lecture time span, as communicated via course website

Lecturing Assistant (if any)
--

Contact LA
--

Office hours LA
--
List of topics

- Software requirements fundamentals
- Requirements elicitation, analysis and specification
- Traceability and validation of requirements
- Quality measures of software requirements
- Non-functional requirements
- Software design fundamentals
- Software structure and architectures
- Software design notations
- Software design strategies and methods
- Architectural Patterns
- Design patterns

Teaching format

Frontal lectures (flipped classroom approach), exercises; team projects.

Learning outcomes

Knowledge and understanding

- Knowing foundations, techniques and methods for designing and implementing information systems, both basic software and application software, with special emphasis on engineering principles applied to conception, creation, development, test and maintenance of software systems
- Being able to work with great autonomy, also taking responsibility of projects and structures

Applying knowledge and understanding

- Be able to apply engineering principles in different domains of different complexity, both those typically IT related and those non-IT related, where software technology has great relevance, such as, for example, in logistics and in medicine
- Be able to define an innovative technical solution to an application problem, which respects constraints and requirements of technical, functional and organizational kind.
- Be able to synthesize knowledge acquired from reading and studying scientific and technical documentation and develop reports and presentations.

Making judgments

- Be able to plan and re-plan a technical project activity, and to bring it to completion by meeting the defined deadlines and objectives
- Be able to identify work goals, compatible with available time and resources.

Communication skills

- Be able to structure and prepare scientific and technical documentation describing project activities
- Be able to interact and collaborate with peers and experts in the realization of a project or a research activity

Ability to learn

- Be able, in the context of a problem-solving activity, to extend even incomplete knowledge taking into account the final objectives of the project
Assessment

The assessment of the course consists of two parts:
- Project (group activity), assessed as: solution of a problem, critical discussion of the state of the art, written report and oral presentation.
- Final oral exam (individual activity), containing verification questions and transfer of knowledge questions.

In case of a positive mark the project will count for all 3 regular exam sessions.

Project written documents have to be delivered at least one week before the final oral exam, otherwise they cannot be assessed, and the exam cannot be registered.

Assessment language

English

Evaluation criteria and criteria for awarding marks

- Project assessment (50% of exam mark): project requirements and project design size, internal coherence and completeness of the documents, adequateness and mastery of techniques, assessed on the written document (this mark is the same for all group participants); awareness and personal contribution to group work, assessed at project presentation (this mark is individual, it confirms or decreases the group mark up to 1/3)

- Final oral exam assessment (50% of exam mark): clarity of answers, knowledge of the proposed topics both as definitions and as examples, use of adequate technical terminology, ability to summarize, evaluate and establish relationships among topics.

Required readings

 Plus selected chapters from the following ebooks (available with unibz credentials from the library website)

Supplementary readings

Open educational resources, representing alternative or supplementary materials, shall be linked to the course website.

Software used

Word processing software, like for example LibreOffice.

UML editing tools, e.g. Argo http://argouml.tigris.org/

Concep map editors, e.g. http://cmap.ihmc.us/