

Prerequisites

Course page

Syllabus Course description

Course title	Fundamentals of Energetics			
Course code	43050			
Scientific sector	ING-IND/10			
Degree	Industrial and Mechanical Engineering			
Semester	II			
Year	III			
Academic year	2016-17			
Credits	4			
Modular	No			
Total lecturing hours	24			
Total lab hours				
Total exercise hours	16			
Attendance	Not compulsory			

Technical Physics

-

Specific educational objectives	The present course is an optional course of the core teaching in the context of the Bachelor in Industrial and Mechanical Engineering, in the specific area of Energy and Mechanical Engineering (Area delle Attivitá Formative Caratterizzanti, Thermal Engineering and Industrial Energy Systems, ING-IND/10).
	It specifically deals with the fundamental concepts of energetics, integrates and complements topics of thermodynamics and heat transfer introduced in previous elective courses and supplies some tools useful for energy auditing and for the design of energy systems.
	The course consists of one module of 24 hours of frontal lectures and 16 hours of exercises.
	The lectures introduce the fundamentals of Energetics, by presenting and discussing main issues on the energy resources. Proper terms and definitions will be introduced. The knowledge on Psychrometry and Thermodynamic of moist air already acquired by the students in previous elective courses will be supplemented with advanced concepts in order to describe and discuss air conditioning cycles. A focus on compressed air generation and distribution systems will be also given.
	Exergy concept and fundamentals will be also presented in order to assess irreversibility losses in energy systems and provide an efficient tool for exergy efficiency

assessment of plants.
Exercises proposed during the course consist in solving practical design problems with the aim of giving the students a deeper comprehension and understanding of the topics.

Module 1				
Lecturer	Marco Baratieri, K0.03, marco.baratieri @unibz.it, 0471- 017201			
Scientific sector of the lecturer	ING-IND/10			
Teaching language	English			
Office hours	Mondays to Thursday, by appointment			
Teaching assistant (if any)	-			
Office hours	-			
List of topics covered	 The course will cover the following topics: Fundamentals of Energetics. Physical quantities. Energy resources. Psychrometry. Processes of moist air. Air conditioning cycles. Compressed air generation/distribution systems. Exergy. General equation. Irreversibility losses. Exergy efficiency assessment of plants. 			
Teaching format	The course consists of lectures in which the topics are presented by the professor. There are also classes (exercises) that will give practical examples of the application of the theoretical topics. Course topics will be presented at the blackboard and using electronic slides. Teaching material and additional materials will be provided by the Professor during the semester.			
Learning outcomes	Through the study and the application of the topics presented during the lessons, students should acquire: 1. the knowledge and understanding of the fundamentals of energetics, the working principles			

	fundamentals of energetics, the working principles and technical solutions regarding some energy engineering systems
2.	the ability to apply knowledge and understanding of the theoretical principles and energy advanced methods to operation principles of the systems
З.	the ability to make autonomous judgements in the assessment of suitable energy scenarios regarding systems applications
4.	communication skills to correctly and properly present the concepts acquired in the course and to solve simple application problems regarding energy systems

	5. lifelong learning skills through the possession of the tools for the acquisition of technical information on the energy generation plants and to update knowledge.
Assessment	Examination of the course is carried out by means of an oral exam. The oral examination includes questions to assess the knowledge and understanding of the course topics and questions designed to assess the ability to transfer these skills to case studies and practical applications. Questions on practical applications also assess the ability of the student to apply the knowledge and understanding of the course topics, the ability to make judgments and finally, the student communication skills.
Assessment language	English
Evaluation criteria and criteria for awarding marks	Students regularly enrolled at the 3rd year of the Bachelor of Industrial and Mechanical Engineering are eligible for the attendance of the lessons and the exam. Other exceptional cases have to be discussed with the Professors. The student is asked to attend an oral exam. It is relevant for the oral exam to: master the specific language (also with respect to teaching language); prove the understanding of the topics and learning skills; evaluate and establish relationships between topics; grow specific skills in critical thinking. Regarding the practical applications, it is relevant to clearly describe suitable technical solutions and be able to make critical judgments and apply the theoretical concepts. The exam mark will be assessed as follows: oral exam
Required readings	 Didactic materials will be provided by the professor during the course. G.F.C. Rogers, Yon Mayhew. Engineering Thermodynamics: Work and Heat Transfer, Pearson Education F. Incropera, D. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley
Supplementary readings	-