Course Description – Academic Year 2016/2017

Course title	Statistical Methods
Course code | 72127
Scientific sector | MAT/06
Degree | Master in Computer Science (LM-18)
Semester | 1
Year | 1
Credits | 4
Modular | No
Total lecturing hours | 24
Total lab hours | --
Total exercise hours | 12
Attendance | Not compulsory
Prerequisites | Basic mathematical skills.
Course page | None. Students should refer to their notes taken during lectures and exercise classes, and consult the suggested textbook and readings.
Specific educational objectives | The course belongs to the type “affini o integrative – formazione affine”.
Specific educational objectives are theoretical and applied knowledge of descriptive and inferential statistics for applications in computer science.
Lecturer | Leonardo Ricci
Contact | Piazza Domenicani 3, Room 1.04, Leonardo.Ricci@unibz.it and leonardo.ricci@unibz.it
Scientific sector of lecturer | FIS/01
Teaching language | English
Office hours | During the lecture time span: Tuesday, 12.45-13:45
Lecturing Assistant (if any) | --
Contact LA | --
Office hours LA | --
List of topics |
- Discrete random variables and their distributions: probability; random variables; probability distributions; expected values.
- Statistical Inference: tests of significance and p-values; Bayes' theorem; a short account on decision-making.
- Correlation and regression.
- Time series analysis: basic smoothing techniques (averaging methods, exponential smoothing techniques); short account on more advanced fitting techniques.
- Dynamic systems and Markov chains: Markov processes, states, transition probabilities and matrices; remarkable applications.
Teaching format | Frontal lectures and project work during the exercise hours.
Learning outcomes | Knowledge and understanding:
- Thoroughly understand the scientific method of investigation.
- Understand methods of mathematics and of statistics that support Information Technology and its applications.

Applying knowledge and understanding:
- Be able to design and execute experimental analyses on information systems or their components.

Making judgments
- Be able to work autonomously according to the own level of knowledge

Communication skills
- Be able to structure and write scientific documentation.

Learning skills
- Have developed learning capabilities to pursue further studies with a high degree of autonomy.
- Be able to learn the innovative features of state-of-the-art technologies and information systems

Assessment	Written final exam only [100 % of mark]. The exam consists of 4-6 exercises.
Assessment language	English
Evaluation criteria and criteria for awarding marks	Correctness of answers / calculations.

Required readings
2. I. Miller, M. Miller, "John E. Freund's Mathematical Statistics with Applications" (7th Edition), Pearson;

Supplementary readings
--

Software used
--