
acm Inroads • inroads.acm.org  31

CONTRIBUTED ARTICLESARTICLES

A Facilitator’s
Guide to Create and
Consolidate a Teenage
Coding Camp
By Ilenia Fronza, Free University of Bozen/Bolzano and Luis Corral, ITESM Campus

We look back on a journey of more than 10 years of
teaching coding skills to high school students using

block-based programming platforms. Eleven years of
evolution, capabilities, and technical content impact teenage
participants in problem-solving, creativity, collaboration,
and coding skills. We discuss how we plan and execute each
instance of a coding camp, the progression of the topics and
tools, and the main insight collected working with more
than 500 participants. We summarize our experience in
four main aspects: Learning strategy, Enabling Technology,
Teamwork, and Partnerships. We also list recommendations
to facilitators and share a series of reflection points.

INTRODUCTION
In current education programs, it is common to find the first
experience with software development in the early years of ele-
mentary education or even preschool, in many ways, thanks to
the dissemination of tools that allow the development of soft-
ware programs without the need to become proficient in a pro-
gramming language. The distribution of these software tools is
an essential enabler of the popularization and democratization
of software development at all levels. Nowadays, it is easy to
find friendly software development tools in toys, video games,
“do it yourself ” kits, and educational environments. However,
the power and scope of these friendly tools go way beyond chil-
dren or K12 students—some of these tools have facilitated the
development of professional software products by non-expert
personnel who create software for productivity or entrepre-
neurial purposes. Behind this exciting and empowering pos-
sibility lie the so-called block-based programming languages,
which are tools that allow the user to create working software
products with little knowledge of the structure and syntax of

a standard programming language. Block-based programming
languages commonly use a programming primitive as a puz-
zle piece metaphor, providing visual cues about how and where
commands may be used, how they should be constructed, the
required parameters, and so on [12]. Examples of widely spread
block-based programming environments are Scratch and Code.
org. Ubiquitous in educational settings are Lego® Mindstorms®
Software Development Kit for robot programming and MIT’s
AppInventor or Thunkable for developing mobile applications.
A recent systematic mapping study [10] identified block pro-
gramming tools, emerging technologies, audiences, and learn-
ing spaces where block programming is being worked on.

When block-based programming languages are the first
approach to coding and software development, students ben-
efit from being guided in a learning process from the basics of
problem-solving through implementing solutions in the form
of software applications without focusing on syntactical is-
sues. The systematic approach to problem-solving and Com-
putational Thinking skills [13] to decompose the problem and
implement solutions are essential foundations for students to
understand problems and then think of software as a tool to
solve them. Indeed, block-based programming helps to work
on aspects such as problem-solving and algorithmic thinking,
among other skills [10].

Whether they are called camps, hackathons, or anything
else with the same basic meaning (i.e., “Short time collaborative
innovation activity focusing on some use of computer skills’”
[11]), these intensive events bring together individuals from
diverse backgrounds and collaboratively tackle complex chal-
lenges within a limited timeframe. Coding camps that consider
both problem-solving and software development tools boost
the potential of students to leverage coding as an effective way
to implement a solution to a real need. The role of an expe-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643726&domain=pdf&date_stamp=2024-05-10

32  acm Inroads  2024 June • Vol. 15 • No. 2

ARTICLES
A Facilitator’s Guide to Create and Consolidate a Teenage Coding Camp

tured as a 20-hour course run over one week (4 hours per day)
and organized in three parts [7]:
• �first, explaining general concepts about problem

understanding and problem-solving, on top of
Computational Thinking skills;

• �second, teaching the fundamentals of computer
programming using a block-based programming language to
avoid the need to learn programming language syntax; and

• �third, proposing a challenge or final project in which
students, working in teams, apply the acquired knowledge
and skills with a hands-on approach.

The desired learning goal of the coding camp is that, by its
conclusion, students should be able to understand and decom-
pose a problem, prototype the solution as a simple software
product, and execute it in a given target platform.

Since its original design, the coding camp leveraged the use
of cell phones as a strategic feature, as it is common for teenage
students to own and use mobile devices intensively; moreover,
by that time, there were already block-based programming en-
vironments focused on mobile software development. These
resources paved the road to setting up a short training plan,
learning by example, and producing simple projects until the
essential knowledge of the tool is attained. In order to ensure
that the coding camp accomplishes its goal not only from the
point of view of instructors but also of participants, a survey of
self-assessment of skills and overall satisfaction with the course
is conducted on the last day of the coding camp.

EVOLUTION OF THE CODING CAMP
The timeline in Figure 1 represents the evolution of the
MobileDev coding camp, its milestones, major changes, and
pivotal initiatives.

Table 1 summarizes the scientific publications that de-
scribe our approach to organizing coding camps as an ed-
ucational strategy to teach software engineering and coding
abilities. Articulating all the specifics of the coding camp’s
educational strategy is out of the scope of this paper. Instead,
we aim to learn from them and complement our vision after
more than 10 years of organizing our activity to identify key
aspects and best practices. In this way, we build up a set of
solid advice for organizers and facilitators while validating
such advice on top of several peer-reviewed scientific con-
tributions that discuss the strategy, execution, results, and
feedback of these coding camps.

rienced instructor as a learning leader and the collaboration
that emerges among participants enriches the learning expe-
rience, gives structure, promotes teamwork, and makes it en-
joyable. With this in mind, we, researchers in Computing Ed-
ucation with a strong Software Engineering background, have
organized and facilitated a coding camp on mobile software
development at the Free University of Bozen/Bolzano (Italy)
since 2012. The preparation of the course curriculum covered
the foundational aspects of problem-solving and coding prac-
tice using block-based programming tools; moreover, it made
a purposeful attempt to stimulate teamwork and delivery in a
professional, collaborative setting.

Coding camps are getting increasingly popular and already in
2016, a survey found a 175% growth rate in 2014 alone [1], while
two recent systematic literature reviews found a substantial num-
ber of research papers dedicated to the topic. The first review,
published in 2019, found 51 relevant papers (most published af-
ter 2012) and found that although these events are highly praised,
their links to actual educational activities are still very scarce [11].
In 2021, a second review retrieved 46 papers and highlighted that
contemporary academic literature gives little guidance to orga-
nize hackathons, and more research works are needed to provide
best practices, means, and tools [9].

Some 11 years have passed, and our coding camp is still of-
fered summer after summer, with a clear progression over the
years on topics, tools, and educational environment. Maintain-
ing the viability of the school, particularly keeping up with the
attention and interest of groups of teenagers, has not been easy.
For this reason, following the suggestions in recent reviews of
the literature [9,11], we have taken a break in our journey to dis-
cuss and share how we plan and execute the course, the evolu-
tion of the topics and tools we use, and the main insight collect-
ed working with more than 10 classes that sum more than 500
students.

GOAL AND STRUCTURE OF THE CODING
CAMP
Originally, the purpose of the MobileDev coding camp (https://
mobiledev.inf.unibz.it) was to showcase Computer Science as
a career option for high school students and attract talent to
the available bachelor programs such as Computer Science and
Information Technology. Students came from various schools
and backgrounds, so the course could not assume that there
was any foundation or previous knowledge of coding or soft-
ware development. For this reason, the coding camp was struc-

Whether they are called camps, hackathons, or anything else with
the same basic meaning, these intensive events bring together
individuals from diverse backgrounds and collaboratively tackle

complex challenges within a limited timeframe.

acm Inroads • inroads.acm.org  33

ARTICLES

students come to the course already equipped with knowledge
or expertise in structured problem-solving or software coding.
For this reason, our learning plan lays its foundations on the
basics of problem decomposition and problem-solving strate-
gies on top of Computational Thinking. A group of high school
students already faces several daily challenges that can be inter-
preted as “problems to solve.” Elemental situations like choos-
ing what bus to ride, how to reach a place in the town, or how to
prepare a sandwich provide an excellent atmosphere to under-

The first edition of MobileDev was run in the summer of
2012 with 10 students who attended by invitation (Figure 2).
After 11 editions, in 2022, the number of enrolled students
reached a record of 170 participants (Figure 3). In the following
sections, we will discuss what happened in between.

TEACHING/LEARNING STRATEGY
As a coding camp, the main driver of the experience should be
practical. However, as discussed, it is difficult to assume that

Table 1: Scientific publications focusing on several aspects of the coding camp’s educational strategy.

Reference Contribution

[2] The paper presents a strategy to leverage each phase of the software development process to foster specific
computational thinking skills.

[3] The paper presents a strategy to foster computational thinking skills during the coding camp by demonstrating the
function of a simple algorithm using a simple hardware prototype.

[4] The results of a follow-up project show the camp’s effectiveness in delivering technical foundations on fundamental
aspects of Software Engineering and concepts of product design and teamwork.

[5]
The paper presents the instructional strategy of the coding camp and an assessment framework to evaluate its
outcome. The results show the instructional strategy’s effectiveness and find games (with Software Engineering take-
away messages) to be a cornerstone of a successful outcome.

[6] The paper proposes and validates the inclusion in the assessment framework of the coding camp of a metric that
leverages “When”, a condition typically found in block-based programming languages.

[7] The paper analyzes how a practical approach to convey CT skills motivates and effectively prepares student tutors.
Moreover, comparing the camp’s previous and subsequent editions identifies the tutors’ specific contributions.

[8]

The paper reports the experience of designing and running a fully remote edition of the coding camp. The comparison
with a face-to-face edition shows that we succeeded in keeping the fun alive (confirming the importance of the
proposed games) in the online edition; participants produced the results at the same level of quality in terms of
product and process as in the face-to-face edition.

Figure 1: Coding camp timeline: Milestones and Number of Participants per Year.

34  acm Inroads  2024 June • Vol. 15 • No. 2

ARTICLES
A Facilitator’s Guide to Create and Consolidate a Teenage Coding Camp

15 minutes. Being in an online setting, one team member built
the wheel while the others provided suggestions. The takeaway
message of this activity was about the importance of working
together toward a solution by identifying small steps. Moreover,
the game introduced an element of fun when observing the type
and the number of objects placed on the wheels.

ENABLING TECHNOLOGY
In the first edition of the coding camp, we used MIT AppIn-
ventor as a block-based programming environment. Back in
2012, MIT block-based tools like Scratch and AppInventor
were very well known in academia, widely available, and free
of charge. For these reasons, we selected MIT AppInventor as
a development environment for the coding camp. The effective
puzzle metaphor of MIT AppInventor, as well as the extensive
documentation and numerous examples available, permitted
the creation of a learning journey that allowed students to im-
plement a simple application in a very short time and boosted
the feeling of accomplishment thanks to the possibility of run-
ning the produced application in an actual cellular phone. At
the time, the disadvantage of the MIT AppInventor platform
was that it was bound only to the Android operating system,
and several students owned cellphones operated by a different

stand a high-level problem, decompose sub-problems of limit-
ed scope, and propose solutions that deliver an efficient solu-
tion to the challenge at hand. Problems proposed by instructors
should be timely and congruent with the environment of the
participants, and solutions should be represented in the form of
pen-and-paper explanations or verbally in front of other peers.

When transitioning to code examples, problems and chal-
lenges evolve to elements that require knowledge of logic,
mathematics, or general culture that the group already has.
Instructors’ focus changes to explain the basics of views (user
interfaces), controls (commands, execution flow, operators, pa-
rameters, control structures), and user interface events. These
principles provide a sound foundation of concepts; as the les-
sons advance, more complex concepts are built on top of basic
ones. After covering the core of the body of knowledge offered in
the course, participants identify a problem to solve and develop
a “capstone project” that prototypes a solution to the problem.
Summary projects should encompass the skills gained during
the course. Final projects were produced individually only in the
first edition (2012), but from the second class (2013) until today,
final projects are developed in teams of two or three students.

Starting in 2017 (Figure 1) and with the purpose of foster-
ing solid collaboration between students, instructors introduced
games [5] as an educational strategy to illustrate development
practices, cultivate communication and collaboration skills, and
improve the overall experience of participating in the camp.
With this strategy, games and fun were found to be a corner-
stone of a successful outcome. With the rise of the COVID-19
emergency in 2020, when the coding camp transitioned to an
online format, we aimed to keep the same “level of fun” in the
online coding camp. The class is gathered in collaborative games
or sent out on scavenger hunts. Participants are generally in-
vited to participate in games that foster a sense of belonging,
engage participants, and reduce fatigue due to prolonged com-
puter use, moving around and releasing energy before focusing
again [8]. For example, during the online editions of MobileDev,
teams competed to create color wheels (Figure 4) using the high-
est number of colors and objects (found in the surroundings) in

Figure 3: Last edition of MobileDev, 2022.Figure 2: First edition of MobileDev, 2012.

Figure 4: A color wheel created by the MobileDev participants.

acm Inroads • inroads.acm.org  35

ARTICLES

tivated to learn individually as much as possible while ensuring
they contribute, communicate, and collaborate with peers.

As a framework for collaborative development, students are
invited to embrace agile software development practices such
as describing requirements as user stories and metaphor sys-
tems, taking roles of customers or project leaders, producing
prototypes (including pencil-and-paper sketches), and working
in iterations to produce incremental releases.

In the last editions of the school, one of the most effective
techniques leveraged was the incorporation of peer-to-peer
mentorship [6]. Thanks to our collaboration with local education
authorities, in 2020 (Figure 1), we proposed that coding camp
“alumni,” that is, students who completed the coding camp in
past years, participate in the next edition, taking the role of tech-
nical tutors. These tutors support the learning leaders (teaching
staff) by making themselves available to their peers, accompa-
nying them in learning the basic principles, and using the tools
with their previous knowledge and peer-to-peer connection as
a powerful teaching resource. With the development of student
tutors, the coding camp helps to create not only additional tech-
nical capacity that remains exclusive for the individual profit of

platform (typically iOS). In order to overcome this situation, at
that time, the coding camp distributed university-owned cell
phones to students needing a real execution platform

However, we overcame this restriction in the 2019 edition
(see the timeline in Figure 1) by introducing Thunkable as the
block-based programming language of choice. Back in 2016,
Thunkable emerged as a spin-off company of some team mem-
bers who developed MIT AppInventor. The advantage brought
by Thunkable was the possibility of developing applications
that, following an identical block-based programming para-
digm, could now be installed both in Android and iOS-operated
devices. This change in the programming technology brought
no change to the strategy and other structural aspects of the
coding camp (for instance, problem-solving or puzzle-based
coding primitives). The reception of Thunkable by students was
very positive since the operating system of the owned cellphone
was no longer a factor in determining whether they could use
the device they owned. This possibility permitted organizers to
open the call for applications to the school as a Bring Your Own
Device (BOYD) coding camp. It demonstrated a higher feeling
of accomplishment in students who could develop an applica-
tion and then install and try it on their own mobile phones.

Much as in other educational and professional settings, the
emergency conditions brought by the COVID-19 pandemic
posed a fundamental challenge for organizers, sponsors, and
participants of the coding camp. On this front, the transition to
two fully remote editions (2020 and 2021, Figure 1) was made
possible thanks to the rapid adoption of communication and
participation technologies like Zoom to set up the sessions,
Mentimeter to allow for crowdsourced participation, and Goo-
gle Documents, through which students shared problems,
wrote simple specifications, or drew diagrams collaboratively.
In 2022 (Figure 1), the coding camp transitioned again to permit
face-to-face interaction. Nonetheless, the school format was set
to hybrid due to the possibilities placed by collaboration tools
and to accommodate a rising number of participants meeting
health and safety restrictions. Moreover, we chose the hybrid
setting to feature an authentic experience during the coding
camp. Indeed, many companies transitioned toward hybrid
work as a “new normal” way of working after the COVID-19
pandemic. Half of the class meets in a classroom while the other
half attends via MS Teams (Figure 5), accessing the same course
content in synchronous interaction with instructors and peers.

TEAMWORK AND COLLABORATION
As discussed above, in the first edition of the coding camp, we
favored the course’s technical foundation and the individual ac-
quisition of concepts. However, starting in the second edition,
we fostered teamwork in a twofold strategy: (1) Work Alone,
since each participant is expected to work independently, and
the learning and skills gained in the course are a personal ben-
efit; and (2) Work in Teams, because in a real-world setting,
teamwork is not only beneficial but a true conditional for suc-
cess. Participants develop coursework exercises individually
but work on projects in teams. In this way, participants are mo-

Figure 5: When working remotely, teams must organize themselves
to collaborate and obtain the best outcome. This picture shows the
development of a game that requires building a paper tower. The team
in the background decided to work locally. The team in the laptop
display is working from home.

36  acm Inroads  2024 June • Vol. 15 • No. 2

ARTICLES
A Facilitator’s Guide to Create and Consolidate a Teenage Coding Camp

guished project” nationwide. This recognition ramped up the
number of participants in the following years (Figure 1). With
the transition to a remote format during the pandemic emer-
gency, even more students could be accommodated, including
those from other cities and regions in the country.

RECOMMENDATIONS TO FACILITATORS
After reflecting on the evolution of the coding camp, the plan-
ning effort, and the results obtained, we divided the insight
gained into independent points that may be useful for instructors
and enthusiasts to design a learning plan, promote it to students,
and keep it current, evolving together with the changes in tech-
nology and unexpected changes in training design and delivery.

1. Find the Right Methodological Approach. Through all the
editions of the coding camp, the teaching staff has been the
same, ensuring continuity on the learning plan and teaching
style, and following-up on the experience and feedback of pre-
vious years. Instructors implement a method that builds from
a strong foundation of problem-solving and then software cod-
ing. The thirst for learning of young students can make them
impatient to start the “hands-on” parts of the course; however,
it is fundamental to convey that, to produce a good software
solution, it is first essential to create a human solution. Embrac-
ing the “solve the problem first, then write the code” philos-
ophy, students understand the importance of growing first as
problem solvers or designers of solutions, and once the solu-
tion exists, prototype it in the form of a software development
tool. A major lesson learned from this approach is that former
participants have voiced is that, even though vocationally they
will not choose computer science as their major, participating
in the coding camp gives them skills to approach better to prob-
lem-solving regardless of the application domain.

2. Incorporate Games and Fun activities. Let us not forget that
our target audience is a group of spirited teenagers who are cer-
tainly curious and want to learn, but most probably, they do want
to have fun, too. Thus, facilitators should leverage games and
entertaining activities as an opportunity to deliver key learning
that goes beyond the technical aspects [5,8]. Fine-grained soft
skills and professional awareness like communication, empathy,
resourcefulness, listening skills, collaboration, and inclusion

each student, but it also creates a seed effect that positively im-
pacts the learning experience of less experienced students. Also,
as they are part of a similar age segment, student tutors bring
additional elements of confidence, communication, openness,
and point of view to the coding camp. It is worth mentioning
that, in the online setting, breakout rooms challenge facilitators
to observe participants’ behavior directly; thus, tutors can sup-
port facilitators in observing teams by using an ad-hoc protocol.

PARTNERSHIP WITH SPONSORS
We promoted the coding camp to high schools in the city in
partnership with the local Education Authority of the Auton-
omous Province of Bolzano (Italy). This partnership was a true
enabler for the strategy and success of the school after several
editions. In 2017 (Figure 1), in agreement with the local Educa-
tion Authority, we shifted the dates of the coding camp to the
week the regular school year starts instead of being offered as
a summer course during the summer holiday. With this adjust-
ment, we secured two key elements for the coding camp’s suc-
cess: On the one hand, students were available in the city and
not out of town on vacation. On the other hand, should the cod-
ing camp schedule overlap one or more hours of regular school-
work, the time invested in the activity could be recognized with
a value of credits for the benefit of students. This initiative is
known in Italy as the “path for transversal skills and orientation”
(PCTO), a government initiative aimed at helping students de-
velop their professional skills and career orientation by provid-
ing them with work-related experiences. Under the PCTO, stu-
dents must complete several hours of work-related experiences,
for instance, internships, apprenticeships, or practical training.

To deepen its impact and recognition as a PCTO activity,
starting in 2018 (Figure 1), MobileDev promoted the develop-
ment of socially-relevant software projects within an atmo-
sphere that emulates a professional setting, including instruc-
tors taking the role of customers, teams organized with clear
roles and responsibilities, rolling out a development schedule,
and implementing an agile software development life cycle. The
produced software applications aim to solve a problem relevant
to society (healthcare, water preservation, garbage manage-
ment, and other similar topics), adding a relevant notion of use-
fulness, value, or noble purpose to the work. In 2019, the cod-
ing camp was recognized as an activity that fostered learning
and practice in a professional setting and was named a “distin-

After reflecting on the evolution of the coding camp, the planning effort,
and the results obtained, we divided the insight gained into

independent points that may be useful for instructors and enthusiasts
to design a learning plan, promote it to students, and keep

it current, evolving together with the changes in technology and
unexpected changes in training design and delivery.

acm Inroads • inroads.acm.org  37

ARTICLES

take clear advantage of the tutors’ participation as they grow
motivation, trust, and communication among peers. As course
“alumni” become tutors, we stimulate a multiplier effect to bene-
fit an increasing number of students in the years to come. Finally,
collecting feedback from participants is paramount to reviewing
the learning goals of a course, assessing the overall experience,
and iterating in the planning, content, and delivery to maintain a
continuous improvement attitude in which the next coding camp
could always be better than the previous one.

6. Take the opportunity for diversity. The MobileDev cod-
ing camp takes pride in being a safe environment for learning.
The diversity of backgrounds, academic specializations, and
learning styles is vast, and very distinct profiles converge in the
coding camp to learn how to work in teams in harmony. The
teaching staff underscores that no one knows all the answers
(including instructors themselves). This affirmation promotes a
safe environment to raise questions, express your own point of
view, and establish a continuous communication pace, always
with respect and professionalism. The participation of female
talents in the coding camp has been remarkable. In the first edi-
tion in 2012, with 10 participants, two were women. In the most
recent 2022 edition, the school accounted for a female gender
representation metric of 30%. Fostering gender diversity is not
limited to promoting female participation in the course, but it is
as well empowered in the configuration of teams, where partic-
ipants are commonly sorted into teams of two women and one
male. In this way, students of different genders, backgrounds,
and approaches contribute to the team’s objectives, accomplish
a goal together, and value the participation of each one.

7. Look for Sponsors. The coding camp was born as a vocation-
al strategy to attract talent to the Free University of Bozen/Bol-
zano (Italy). Without the university’s support and sponsorship,
instructors would lack a proper environment, including facilities
(classroom, equipment, communication channels), tools (laptop
computers, mobile phones), and advertisements. In parallel, the
support that the coding camp has received from the local ed-
ucation authority has been of utmost importance in spreading
the word to schools, reaching the target audience, and convinc-
ing teachers and students that participating in this coding camp
is not only formative but also convenient. With the support of
key partners like the Education Authority, organizers can ensure
that relevant stakeholders endorse the project and bring a boost
of trust to other actors like parents or guardians. The recogni-
tion the MobileDev coding camp has gained through the years
has helped to create a solid and recognized brand that builds
trust and reputation. Thanks to the support of local Education
institutions, the coding camp’s success is undeniable.

We are optimistic that several of these guidelines will hold
when designing a learning journey in fields other than Software
Engineering. However, further research and experiences should
be conducted and reported before coming to a solid conclusion
on this front.

can be taught through games and similar experiences. Indeed, a
game carefully chosen energizes the class and delivers key mes-
sages. After the game is completed, a quick download discussion
helps to share the lessons learned during the game and sets the
stage to resume the learning journey with new topics.

3. Carefully Choose the Enabling Technology. As technical
training, the selected development tools can determine the suc-
cess of the learning journey. We took advantage of the availabil-
ity and easy comprehension of block-based programming lan-
guages and also from the enormous power that such platforms
display today. Tools like Thunkable permit the development not
only of educational but also professional software applications.
Students learn the basics of the tool and quickly discover the
potential of the software tool in a larger scope. It is crucial to
keep an eye on the evolution of technology due to the continu-
ous evolution of tools and technologies, and as instructors, be
early adopters of emerging tools to avoid becoming outdated or
obsolete. Also, thanks to the technology, the coding camp was
viable even in the most challenging times. The incorporation of
communication and distributed collaboration tools permitted
remote attendance when it was mandatory but opened doors
as well to extend the camp’s outreach by allowing a hybrid for-
mat that was key to increasing the number of participants every
year while simulating a remote and distributed work environ-
ment that is currently normal after the COVID-19 emergency.

4. Cultivate Teamwork. By stimulating the work in an emu-
lated professional setting, teamwork is the keystone for project
success. Participants share the same learning goal and, working
towards it, actively assist others in learning and, in turn, benefit
from an effective learning environment. A course strategy in
which participants are required to work in teams gives them
exposure to working with other participants of different back-
grounds, priorities, perspectives, and approaches to work. The
experience of remote and hybrid work also gives a taste of con-
temporary professional work. In software development com-
panies (as well as in other domains), companies are distributed
geographically, and colleagues, partners, and customers can sit
in different regions or countries. Finally, being exposed to the
execution of an agile-inspired software development process
also gives participants a look at how collaboration works when
aiming for a common goal, looking to fulfill a customer’s re-
quirements, or taking different roles or responsibilities.

5. Promote Students as Teaching Partners. We mentioned
the relevance of incorporating student tutors into the knowl-
edge-transfer strategy of the coding camp [7]. Adding student tu-
tors was a major milestone in the camp’s history, as it represented
the extension of the learning process, not only as a participant of
the coding camp but also reinforcing the skills gained serving as
a tutor. We strongly believe that a coding camp that can create a
seed effect in young students motivates the learning process and
sustains the viability of the camp by continuously preparing stu-
dent tutors. On top of that, we observed that camp participants

38  acm Inroads  2024 June • Vol. 15 • No. 2

ARTICLES
A Facilitator’s Guide to Create and Consolidate a Teenage Coding Camp

share knowledge, create tutoring relationships, promote collab-
oration, and, through a sense of purpose, leverage their new
knowledge to accomplish results that positively impact their
communities. 

References
	 1.	� Champagne, J. (2016). Are coding bootcamps worth it? https://blog.capterra.com/

are-coding-bootcamps-worth-it/
	 2.	� Fronza, I., El Ioini, N., & Corral, L. (2015). Students Want to Create Apps: Leveraging

Computational Thinking to Teach Mobile Software Development. In Proceedings
of the 16th Annual Conference on Information Technology Education (SIGITE ‘15).
Association for Computing Machinery, New York, NY, USA, 21–26. https://doi.
org/10.1145/2808006.2808033

	 3.	� Fronza, I., Corral, L., & Pahl, C. (2019). Combining Block-Based Programming and
Hardware Prototyping to Foster Computational Thinking. In Proceedings of the
20th Annual SIG Conference on Information Technology Education (SIGITE ‘19).
Association for Computing Machinery, New York, NY, USA, 55–60. https://doi.
org/10.1145/3349266.3351410

	 4.	� Fronza, I., Corral, L., Pahl, C., & Iaccarino, G. (2020). Evaluating the Effectiveness
of a Coding Camp through the Analysis of a Follow-up Project. In Proceedings of
the 21st Annual Conference on Information Technology Education (SIGITE ‘20).
Association for Computing Machinery, New York, NY, USA, 248–253. https://doi.
org/10.1145/3368308.3415391

	 5.	� Fronza, I., Corral, L., & Pahl, C. (2020). End-User Software Development:
Effectiveness of a Software Engineering-Centric Instructional Strategy. JOURNAL
OF INFORMATION TECHNOLOGY EDUCATION, vol. 19, p. 367-393, ISSN: 1539-3585,
doi: https://doi.org/10.28945/4580

	 6.	� Fronza, I., Corral, L., & Pahl, C. (2020). An Approach to Evaluate the Complexity of
Block-Based Software Products. INFORMATICS IN EDUCATION, vol. 19, p. 15-32,
ISSN: 1648-5831, doi: 10.15388/infedu.2020.02

	 7.	� Fronza, I., Corral, L., Iaccarino, G., & Pahl, C. (2021). Enabling Peer-Led Coding
Camps by Creating a Seed Effect in Young Students. In Proceedings of the
22nd Annual Conference on Information Technology Education (SIGITE ‘21).
Association for Computing Machinery, New York, NY, USA, 117–122. https://doi.
org/10.1145/3450329.3476860

	 8.	� Fronza, I., Corral, L., Wang, X., & Pahl, C. (2022). Keeping fun alive: an experience
report on running online coding camps. In Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET ‘22). Association for Computing Machinery, New York, NY,
USA, 165–175. https://doi.org/10.1145/3510456.3514153

	 9.	� Happonen, A., Tikka, M., & Usmani, U. A. (2021, November). A systematic review
for organizing hackathons and code camps in Covid-19 like times: Literature in
demand to understand online hackathons and event result continuation. In 2021
International conference on data and software engineering (ICoDSE) (pp. 1-6). IEEE.

	10.	� Perin, A. P. J., dos S Silva, D. E., & Valentim, N. (2023). Investigating block
programming tools in high school to support Education 4.0: A Systematic Mapping
Study. Informatics in Education, 22 (3), 463-498.

	 11.	� Porras, J., Knutas, A., Ikonen, J., Happonen, A., Khakurel, J., & Herala, A. (2019).
Code camps and hackathons in education-literature review and lessons learned.
Proceedings of the 52nd Hawaii International Conference on System Sciences.

	 12.	� Weintrop, D. Block-based programming in computer science education,
Communications of the ACM 62, 8 (2019):22–25. https://doi.org/10.1145/3341221

	 13.	� Wing, J. M. Computational thinking, Communications of the ACM 49, 3 (2006):
33–35. https://doi.org/10.1145/1118178.1118215

Ilenia Fronza
Faculty of Engineering
Free University of Bozen/Bolzano
Piazza Domenicani 3
Bolzano, Italy 39100
ilenia.fronza@unibz.it

Luis Corral
ITESM Campus
Epigmenio González 500 Fracc. San Pablo
Queretaro, Mexico 76130
lrcorralv@tec.mx

DOI: 10.1145/3643726
Copyright held by owner/author(s).

TAKE AWAY AND CONCLUSION
We have reviewed the evolution for over 10 years, offering a
coding camp for teenage students using block-based program-
ming languages. Although the impact of the coding camp on
students is yet to be analyzed in detail, we can summarize our
experience in major takeaway points for other facilitators, in-
structors, or enthusiasts of Computer Science for All and similar
initiatives.

1. Focus on the method: A structured approach to prob-
lem-solving, powered by a process like Computational Think-
ing, ensures that participants understand the importance of
framing a problem, decomposing it, finding a solution, and only
after that, thinking of software as a tool to implement solutions.

2. Empower learners and foster collaboration: Promoting a
diverse and collaborative environment fosters teamwork and
makes the coding camp not only technical but a fun and en-
joyable social experience. Instructors are expected to serve as
learning leaders. However, the experience evolves to the next
level when students are empowered to help themselves solve
the challenges, or, as we observed in later editions of the school,
a peer-to-peer tutoring program is formalized.

3. Keep up with technology: A decade may be relatively long
in terms of available technology, both software and hardware
tools. Facilitators should take care of incorporating current
software development tools and execution platforms to ensure
the timeliness of the transferred knowledge and engage par-
ticipants with the technology they actually use and aspire to
master.

4. Build a brand: After ten years of promoting a coding camp,
people (especially teachers and parents) start identifying it, and
the experience of previous editions helps build a reputation.
With this, we cultivate expectations in parents, teachers, and
students who wait for the call and apply early to secure a place.

5. Connect with stakeholders: Running and sustaining a code
camp without help can be game-lost from the outset. Identi-
fying sponsors and working hand in hand with them gives the
support, endorsement, and dissemination needed to attract the
best talent to the course.

6. Do not forget purpose: There was a clear evolution in the
attractiveness, number of participants, and interests of spon-
sor schools when organizers placed a notion of purpose on the
outcome products of the coding camp. Going beyond example
apps, undertaking a short challenge to produce a tool with a
meaningful purpose attracts, focuses, and motivates partici-
pants, instructors, and sponsors.

Coding camps are an unparalleled environment to transfer
knowledge and empower and enable young students to acquire
new skills. After 11 years of running a coding camp, we have
witnessed the continuous motivation of teenagers to learn,

