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ABSTRACT
Sport climbing is becoming an increasingly popular competitive

sport as well as a recreational activity. For this reason, indoor sport

climbing operators are constantly trying to improve their services

and optimally use their infrastructure. One way to support such a

task is to track the climbing activities performed by visitors while

climbing. This paper considers a scenario in which a sensor is at-

tached to a piece of climbing equipment that connects the climbing

rope to the bolt anchors (quickdraws) and a camera is overlooking

a climbing wall. Within this scenario, this paper explores two ap-

proaches to detect when a climber finishes a climb and pulls the

rope from the wall: 1) a hybrid approach in which sensors and cam-

eras are used and 2) a video-based approach where only cameras

are used. The evaluation resulted in recognition precision of 91%

for the hybrid and 76% for the video-based approach, respectively.

This paper also discusses advantages and disadvantages of analysed

approaches and points out future research directions to allow the

automatic tracking of climbing activities.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computingmethodologies→Machine learning; •Hardware
→ Sensors and actuators.
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1 INTRODUCTION
Sport climbing is becoming an increasingly popular competitive

sport as well as a recreational activity. Sport climbing can be per-

formed outdoors, e.g., on natural rocks as well as indoors, i.e., on

artificial routes in climbing gyms, and requires protection such as

harness and ropes.

Today, science and engineering are used in various sports to

help athletes to improve their performance [3]. A popular way to

achieve this is activity tracking [4], where mobile sensing technolo-

gies gained popularity due to their ability to collect and process

measurement data. For example, smart watches and fitness trackers

are used by cyclists and runners to obtain and visualize statistics

about their endurance and performance. In contrast, sport climbing

did not receive an equal amount of attention in consumer electron-

ics so far. Indeed, collecting quantitative climbing data would allow

a number of applications: on an individual level, it could support

performance assessment and training; on a gym level, anonymous

usage statistics could help to understand which routes are popular

and guide route builders to construct climbing gyms that people like.

Moreover, anonymous sensing technology could help to enforce

minimum safety standards, e.g., reporting strong falls.

Previous research efforts concerned with monitoring sport climb-

ing activities demonstrated promising systems able to detect several

activities (e.g., climbing, resting during a climb, falling) and assess

climbing performance. To this end, a variety of sensing technolo-

gies has been proposed, such as body-worn sensors, video analy-

sis and instrumented climbing walls. However, most of these sys-

tems involve wearable devices for tracking climber’s movements

(e.g. [7, 21, 22, 28]), and some are constrained to laboratory set-

tings (e.g. [14, 32, 34]) due to their complex and expensive design.

This paper is the result of research cooperation with Vertical-Life

(https://www.vertical-life.info), a company that develops climbing

gym management software, and therefore deals with an activity

monitoring approach that is suitable for deployment in commercial

climbing gyms i.e., does not require user interaction and modifi-

cation of the existing climbing infrastructure that would require

safety and compliance certifications.

In this work, we augment a standard piece of a climbing equip-

ment present on climbing routes in every climbing gym, namely a

quickdraw, with a small 3-axial sensor that measures acceleration

of the quickdraw during a climb. We hypothesise that climbing
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activities can be inferred from recordings of movements of the

augmented quickdraw. The setup envisioned for data collection is

depicted in Fig. 1a. We decided to equip the second-lowest quick-

draw to the ground with a sensor since, in practice, climbers often

neglect to clip the rope into the first.

Our overarching goal is to detect activities throughout the day,

and understand what the climber is actually doing, e.g., clipping

the rope into a quickdraw or pulling the rope after the climb is

finished (removing the rope). That assumes a scenario in which

sensors are distributed across the climbing gym and continuously

collecting data about events caused by various climbs and various

climbers. For now, it is not our intention to differentiate between

climbers. The problem of the current interest is to detect climbing

episodes within continuous stream of data. Moreover, this paper

only considers “lead climbing”, which describes the type of sport

climbing depicted in Fig. 1a: the rope is carried up by the climber,

who routinely stops to clip it into quickdraws for safety. The other

side of the rope is led through a device that—in case of a fall—stops

the rope and is operated by the belayer. The belayer, when the

climber reached the top, also slowly releases the belaying device

to lower the climber to the ground. After one climb is finished, the

rope is removed, and another climb can begin. A possible approach

to identify climbing episodes is, therefore, to detect when the rope

is pulled out of all the quickdraws after a climb.

Hence, in this paper, our goal is to detect the rope pulling
activity and correctly label with that information data obtained

from the sensor augmented quickdraw. This is important by itself,

but, in future work we also aim at using only sensor data and

extract from it other information about the climbs. This requires

Machine Learning techniques that use training data where the sen-

sor data is correctly labelled with semantic information describing

the performed activity. In fact, video recording is not always feasi-

ble: climbers do not like it and it requires a specific infrastructure

and authorization. Hence, the research described in this paper can

also help to achieve this long term goal, that is, to acquire sensor

data and their correct semantic labels. We investigate here two

methods that could be used to speed up a totally manual labelling

of the sensor data: a hybrid method that relies on both sensor and

video data and a video-based method that relies only on video data.

The rest of the paper is structured as follows: Sect. 2 reports

about related work, Sect. 3 and Sect. 4 introduce the case study and

two methods we adopted to detect rope pulling activity, Sect. 4.1

presents the hybrid method, Sect. 4.2 presents the video-based

method. Sect. 5 evaluates the two methods and Sect. 6 concludes

the paper.

2 RELATEDWORK
To the best of our knowledge, this work is the first study on detect-

ing rope pulling activity during climbing. Hence, there is no earlier

work specifically dedicated to that problem to be compared with

ours. Hence, in this section, we briefly review the broader subject of

activity detection in climbing. Previous works on that subject can

be divided into two main groups: video-based and sensor-based
techniques. The former relies on human action recognition, which

is an area of computer vision [26] while the latter includes works

on time-series analysis of data obtained from sensors.

In video-based methods, athletes may be tracked by several cam-

eras. Like in other applications such as robotics or surveillance

systems, also for sports activities, one can take advantage of hu-

man activity recognition and object detection. In [13], the authors

extracted temporal human 2D pose sequences from video frames,

followed by automatic event detection in the athlete’s motion using

convolutional neural networks (CNN). Similarly [1] and [10, 20],

implemented pose estimation based on the estimation of the skele-

ton of every person in an image in a soccer match and climbing,

respectively. In [2], players in a soccer match are represented with

blobs, i.e., regions segmented out from the playfield by color differ-

entiating. Video-based activity recognition in climbing is mainly

performed by using the depthmap obtained from aMicrosoft Kinect

device, also used in computer games [18, 20]. The limitation of such

device is hardware complexity: it consists of two cameras and an

infrared projector, therefore, it requires adjustment between the

camera and the projector.

In sensor-based methods, climbing activities are considered as

temporal events that may be detectable from datameasured through

sensors. Event detection is an important task in the analysis of time-

series data. Each event is referred to as a point in time where data

that belonging to an interval around that event has specific charac-

teristics [15]. In this regard, sliding windows are used to transform

each interval of time-series data into an appropriate feature vector.

Other research areas relevant to event detection are changed point

detection and time-series segmentation [15]. In previous studies,

different types of sensors were embedded in different places and

employed to analyze sport climbing. The authors of [22] and [21]

measured the acceleration of climbers through wearable sensors on

wrists for performance assessment and route recognition, respec-

tively. In the same way, the authors of [28] developed an analytical

framework for assessing general climbing performance during train-

ing using a single ear-worn accelerometer-based sensor. In addition

to wearable sensors, [23] presents a sensor-equipped climbing wall

in which capacitive sensors are embedded into climbing holds to

detect any touch by hands or feet. Similarly, in [27] force sensors

are utilized to measure the load applied to the holds as a child hangs

and steps up during climbing. In [37] the authors describe fence

climbing recognition based on the data obtained from a three-axial

accelerometer mounted on the fence. Their method has two steps:

first, to discriminate activity vs. no activity and second, to classify

the activity into climbing or rattle. They used signal variation to

detect events with vibration, from non-event with no or little vibra-

tion. They proposed a threshold for a signal variation to distinguish

between the two situations.

Differently from previous studies, we do not attach any sensor

to the wall or the body, but we augment a climbing instrument.

Introducing our own climbing holds might involve certification, in-

surance, and legal costs. For example, a patent for a “touch-sensitive,

illuminated climbing hold” is already registered with the patent

number US 2019 329 113A1 [11]. Regarding wearable sensors, it is

not convenient nor desired by the climbers to wear a device (either

on their hand, belt, or leg) while climbing a wall. Also, when the

sensor is attached to the quickdraw, as we propose, there is no

need to instruct climbers on how to use the tracking device each

time. Moreover, we utilize video frames recorded by the camera to

obtain information on the vertical movements of the climber. We

Session 2: Novel MM Analysis Approaches in Sports MMSports'20, October 16, 2020, Seattle, WA, USA

54



employ a person detection approach, which is computationally less

expensive than pose estimation.

3 CASE STUDY: ROPE PULLING
As stated in the introduction, we aim at detecting the activity of

removing the rope from the quickdraws, which is commonly per-

formed by climbers after they are lowered to the ground. We call

this activity rope pulling as it involves pulling the rope down by

the climber, until the rope has passed through all the quickdraws it

had previously been clipped in while the climber was ascending.

3.1 Data collection
We used two types of devices for detecting the rope pulling activity,

i.e., a video camera and a quickdraw enhanced with an accelerom-

eter. Two groups of data, one consisting of a video recording and

the other containing accelerometer readings were generated and

collected during climbing sessions on the selected route.

One male and one female climber participated in the experiment.

The participants’ skill levels were intermediate i.e., self-estimated as

5a and 6b on-sight on the French Rating Scale of Difficulty (FRSD).

One participant had a climbing experience of five years and the

other of thirteen years. For the purpose of data collection, the

participants were asked to climb in the leading style five times

in succession on one pre-selected route. The participants climbed

in their usual speed, clipping the rope into every quickdraw, and

were free to take resting time between climbs. The participant who

climbed pulled the rope after each ascent. The other participant

was responsible for belaying. After the first session of five climbs

was completed, the participants swapped the roles.

Data collected during the first climbing session were used to

develop detection algorithms. During the later evaluation of the

detection performance (in Section 5), data collected from the second

climbing session was used for benchmarking them. In the following,

we refer to the respective sets of data as training and test set.

The quickdraw movements were captured using a small ac-

celerometer sensor attached to the strip in the central part of the

quickdraw (see Fig. 1a). We used one Movesense
1
sensor and con-

figured it to sample tri-axial acceleration data at 50Hz frequency,

i.e., one sample every 20ms. The communication with the sensor for

data download was based on Bluetooth connection with an iPhone

X running the “Movesense Showcase” mobile app
2
. The sensor-

enhanced quickdraw was placed on the second-lowest position to

the ground. Upon placement, the sensor’s x-axis was horizontal and

parallel to the wall, the y-axis was vertical, and the z-axis was hori-

zontal and orthogonal to the climbing wall. Moreover, the climbs

were video recorded using a fixed camera that was placed close to

the ground and facing the climbing wall with a selected route. All

video recordings were taken with the same constant frame rate of

30 fps. Each climbing session was fully recorded.

4 METHODS
Based on the available data—sensor and video data—we explored

two analysis techniques that detect rope pulling-related events.

First, a hybrid approach, in which initially by means of person

1
https://www.movesense.com

2
https://apps.apple.com/us/app/movesense-showcase/id1439876677

Belayer

Climber

Quickdraw

Attached
sensor

(a) (b) (c) (d) (e)

Figure 1: The setup, the two steps of the hybrid approach,
and the video approach (original picture of the climbers
courtesy by Petzl). The setup (a): Climbing a route in the lead
climbing style: the belayer holds one end of the rope while
the climber clips the rope into quickdraws for protection.
Step 1 hybrid (b): Detection of position of the climber and
belayer from video data. Step 2 hybrid (c): Identification of
rope-pulling events from sensor data. Video (d): Detection of
climbing rope within the light-coloured rectangle. Video (e)
When rope-pulling is finished, the light-coloured rectangle
does not contain a rope.

detection, we identify the belayer and the climber, see Fig. 1b. Then,

once we know when the climber is back on the ground, we analyse

the sensor data to find the exact point when the rope pulling ends,

see Fig. 1c.

In the video-based approach, we detect the position of a quick-

draw, that was marked on the climbing wall surrounding it with a

light-colored adhesive strip (see Fig. 1d).We actually detect if within

the mentioned rectangle the rope is present. If not, we consider the

rope to be removed (or pulled, as in Fig. 1e).

An illustration of both detection approaches (also considering

the timeline) is presented in Fig. 2. It is worth mentioning that

the video and accelerometer data are synchronized based on times-

tamps assigned locally i.e., by the video camera and sensor device,

respectively.

4.1 Hybrid approach
This section presents a two-step approach for detecting occurrences

of the rope pulling activity in sensor data using a sliding window

data analysis procedure [19]. At first, we use video processing to

identify occurrences of a discrete event, i.e., that a climber reached

the ground again and therefore is considered to be lowered. The
lowered event marks the earliest time for the beginning of rope
pulling; rope pulling starts after the climber had been lowered to

the ground. Then, the start and the end of rope pulling are identi-

fied using a sliding window analysis of acceleration measurements

coming from the sensor following each lowered event. The method

is based on the observation that before the start and after the end

of rope pulling, there is no or little movement of the quickdraw

on which the accelerometer sensor is located. Although the video

camera and sensor device do not share a common temporal basis,

and therefore the synchronization of lowered events in video and

acceleration data is possibly not precise at the sample level, the
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09:34:15 09:34:57 09:35:08 09:35:14 09:35:3909:31:36

[Rope] [Rope] [Rope] [Rope] [Rope] [Rope] [No rope][No rope]

Time

33:30 09:34:00 09:34:30 09:35:00

09:35:00

09:31:54 09:34:01

09:33:00 09:33:30 09:34:00 09:34:30 09:35:00

Figure 2: (Top) Sample frames from a video recording of one climb. White and green rectangles indicate the bounding boxes
of the climber and the belayer, respectively. Upon reaching the top of the route the climber lowers to the ground and sub-
sequently pulls the rope. (Middle) Illustration of a three-axial acceleration signal that is acquired by the sensor-enhanced
quickdraw and synchronized with the above video frames. (Bottom) Examples of detected regions in video frames for object
detection with classes rope (selected quickdraw has a rope), and no rope (selected quickdraw is without a rope).

algorithm could still accurately identify the start and end of each

rope pulling, as it will be shown.
The workflow for detecting the lowered event is as follows. First,

we use RetinaNet [24, 33] to extract bounding boxes of persons

on a per-frame basis (Fig. 2 top). These are specified with a pair

of coordinates of the corners of rectangles around the belayer and

the climber. The distance of the climber from the ground is crucial

to the event detection; therefore we estimate it by calculating the

maximum vertical pixel distance of the bounding boxes’ centers

from the bottom of the frame. After having obtained the climber’s

distance from the ground for each frame independently, we apply

temporal smoothing based on zero-phase filtering for outlier elimi-

nation. Finally, the lowered events are identified in a simple iterative

procedure from the smoothed signal as a subset of the local minima

points. Examples of temporal trajectories that illustrate lowered
event detection are presented in Fig. 3.

The sensor located on the second quickdraw records the ac-

celeration along three axes, denoted by 𝐴𝑥 , 𝐴𝑦 and 𝐴𝑧 . These

time-series cannot be used directly because the acceleration due

to the movement of the rope is registered together with the grav-

ity component. The norm of this component is well-known (9.81

𝑚/𝑠2), but it cannot be removed directly due to the presence of

rotational movements. A low-pass filter, as proposed in [6], was

demonstrated to be effective for isolating the gravity component

from the quickdraw movement-related component. The accelera-

tion due to gravity is calculated using a recursive low-pass filter as

follows:𝐴𝑔𝑟 [𝑛] = 𝑎 ·𝐴[𝑛] + (1−𝑎) ·𝐴𝑔𝑟 [𝑛−1], where 𝑎 is a constant
dependent on the sensor sampling rate and 𝐴 is the raw input data

(𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 ). The acceleration component due to the quickdraw

movement 𝐴𝑚 is then obtained by subtracting the low-pass filtered

data from the original signal along the three-axes.

To detect the start and end event of rope pulling in acceleration

signals 𝐴𝑚 , we employ a sliding window procedure that extracts

Figure 3: (Top) Height of computed bounding boxes in pix-
els for the training dataset of five climbs. (Middle) Blue
line: original signal, orange line: zero-phase filter. (Bot-
tom) Points indicating when climber reached the top (blue
squares) and lowered to the ground (green squares).

data windows of 1s (50 samples) length with a shift of 1 sample

between one window and the next one. The optimal window size de-

pends on the target activity, however, for common human activities

window size of 1-2s has often been identified as optimal [5, 12]. For

each window, a single scalar value is calculated, derived from the

three-dimensional accelerometer’s vector, that represents the move-

ment energy over a short period of time (short-term energy). Then,

the short-term energy of each window is compared to a threshold of

7.2g, and if it is greater, then the window is added to the sequence

of previously found windows. This process is repeated for each

lowered event until a consecutive sequence of windows of at least

5 seconds duration is found, which is a reasonable assumption for
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Algorithm 1 Event detection with sliding window

1: Input: list of lowered timestamps 𝑇𝑙 ; energy threshold 𝑒 ; duration

threshold 𝑑 ; acceleration signal 𝐴; window length𝑊

2: Output: lists of timestamp pairs 𝑇𝑟𝑝 that indicate the timing of the

start and end event of rope pulling for given signal 𝐴

3: procedure DetectRopePulling(𝑇𝑙 , 𝐴, 𝑒,𝑑)
4: 𝐴𝑚 = 𝐴 −𝐴𝑔𝑟 ⊲ Gravity removal

5: 𝑇𝑟𝑝 = ∅ ⊲ Initialize timestamp set

6: for all timestamp 𝑡 in𝑇𝑙 do
7: 𝑇 = ∅ ⊲ Initialize auxiliary timestamp set

8: for all windows 𝑤 after 𝑡 do
9: Calculate short-term energy:

10: 𝐸𝑤 =

(∑𝑊
𝑖=1 𝑤𝑥 (𝑖)2 + 𝑤𝑦 (𝑖)2 + 𝑤𝑧 (𝑖)2

)
1/2

11: if 𝐸𝑤 > 𝑒 then ⊲ Energy thresholding

12: 𝑇 = 𝑇 ∪ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 (𝑤)
13: else if |𝑚𝑎𝑥 (𝑇 ) −𝑚𝑖𝑛 (𝑇 ) | > 𝑑 then
14: 𝑇𝑟𝑝 = 𝑇𝑟𝑝 ∪ {(𝑚𝑖𝑛 (𝑇 ),𝑚𝑎𝑥 (𝑇 )) }
15: break ⊲ Start search for a new 𝑡

16: else
17: 𝑇 = ∅ ⊲ Restart search

end procedure

the minimum duration of rope pulling. Algorithm 1 summarises the

described procedure.

The aforementioned threshold is the one providing better sys-

tem performance over a range of threshold values and using the

training set of sensor recordings. For this, the actual start and end

of rope pulling activities were transcribed from the video recording

and used to manually annotate three-axial acceleration signals. A

number of threshold values, ranging from relatively low to rela-

tively high short-term energies, was tested, and the best threshold
was determined. The best threshold is defined as the threshold,

which resulted in the smallest difference between generated and

manual annotation. During the later measurement of detection per-

formance, the same similarity metric, known as the Jaccard index,

was used. An illustration of the hybrid approach is shown in Fig. 4.

4.2 Video-based approach
In the video-only based approach, we trained a CNN for object

detection via transfer learning to localize the position of a yellow

rectangle that is attached around a target quickdraw and to identify

whether the quickdraw has a rope clipped into [26].

This method exploits video data for detecting the end of the

rope pulling activity, while the start is roughly estimated by as-

suming that all rope pulling events have the same duration, as the

average duration of the activity in the first session of climbs. The

hypothesis is that the video of a quickdraw is a valuable source of

information: by the detection of rope inside a quickdraw, we can

understand, whether a climber is still performing some activity. Fur-

thermore, when the rope is not present there, then the rope pulling
has happened, and the climber is not using the route anymore. As

previously mentioned, we consider the second quickdraw, but the

described system can be used for the other quickdraw positions as

well. Using the second quickdraw has two advantages: it is easy

to install the system and—in our experimental setting—it is almost

perpendicular to a camera filming from the ground. If the camera

is installed on the ceiling of a climbing gym, it might be better to

Figure 4: (Top) Acceleration signals for the session of five
climbs in the training set. (Middle) Short-term energy of
frames of 1s length and a shift of 1 sample. Vertical bars in-
dicate lowered events. (Bottom) Generated annotation syn-
chronized with the acceleration signal. 1: rope pulling, 0: not
rope pulling.

observe one of the top quickdraws even though that will not record

some climbing attempts where the climber did not reach the top.

Hence, we have develop an object detection procedure for the

target quickdraw with or without a rope based on a CNN (the term

target relates to an area that is clearly marked, e.g., with a light-

colored adhesive strip forming a rectangle as in Fig. 2, bottom).

Usually, object detection combines two sub-tasks: the detection of

the location of an object in the image (with a confidence score), and

the prediction of the class label for the object[16]. Existing CNNs

are capable of localizing objects with high accuracy [17, 30], but

quickdraws are too specific and not detected. Nevertheless, transfer

learning allows us to retrain a network to detect new objects [31].

To implement it, we manually annotated all the images in videos

so that for each image we created a text file with the location of a

target quickdraw and the label for the object (where the label rope
indicates a rope inside the region, and no_rope, the absence of it,
see Fig. 2 (bottom)). In this way, we obtained an object detection

problem with two objects to detect: no_rope and rope. We employed

a CNN RetinaNet with a ResNet-50 backbone, pre-trained on the

COCO2017 [25] dataset. The network is trained on a set of anno-

tated video frames from our training video. Since it has been shown

that dataset augmentation can improve the prediction accuracy of

a model (e.g. [9]), we augmented the training dataset with images

that were selected from the same dataset by applying transforma-

tion, such as increasing or decreasing brightness, contrast and RGB

colors up to 10%, rotation by up to 10%, shifting within a frame

by up to 6% of width and resizing the image by up to 20% or the

original size. In that way, we created a dataset where 24989 images

are annotated as rope and 12100 as no_rope. To speed up the training
process, we used freezing hidden layers [8]. We trained RetinaNet

for 20 epochs using a GPU.

To evaluate the model, we used images from the second filming

session: 13965 of them were manually labeled as rope and 6607 as

no_rope. For every test image, the model produces the list of objects

present in the image along with their position and probability. For

every frame in a test set, the model found at least one object. For
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some frames, the model produced more than one objects as a result-

ing prediction, but we only considered the object with maximum

probability as a label for the frame.

The proposed model was able to discriminate quickdraws with

or without a rope in a fairly accurate way. Fig. 5 illustrates the

prediction results of the network evaluation on the testing video

recording. The vertical axis represents the class prediction for the

detected object (when the red line is equal to zero, there is no rope

in the detected object; when it is close to one, there is a rope). The

gray line is a normalized position of a climber on the wall. The

frames with predicted class 0 are clearly occurring when the climber

climbs the wall, i.e., when the gray dotted curve clearly moves

from the bottom to the top position and from the top to bottom

back, indicating the movement of a person who ascends the wall.

Furthermore, it follows the activity of rope pulling, i.e., when the

gray curve remains at the bottom part of the figure, indicating that

the climber stays on the floor and removes the rope from the wall

before starting the next route. Although after training the network,

we were able to detect objects with high accuracy, there were some

inaccuracies in the predictions (Fig. 5, top). They usually happen at

the beginning of an ascent and at the end of it: at the beginning,

the model can not distinguish the object when, for example, the

quickdraw is hidden by the hand of a person when they clip; at

the end of the ascent, the model is confused when there are two

ropes in the region. To remove them, we assigned the label for a

frame to be no_rope only if the next 90 out 100 frames are detected

as no_rope; thus it is clear that in the next 3 seconds of video, the

model is confident about no_rope prediction (see formula 1).

𝑐 ′𝑖 =

{
0 if

∑𝑗=𝑖+99
𝑗=𝑖

𝑐 𝑗 <= 10,

1 otherwise

(1)

where 𝑐 ′
𝑖
is the newly obtained class label for frame i, 𝑐 𝑗 is the

predicted class label for frame j,
∑𝑗=𝑖+99

𝑗=𝑖
𝑐 𝑗 is the amount of rope

objects for a window of 100 consecutive frames after the target

frame (including the frame itself).

After having obtained the sequence of the frame labels, the end

of a rope pulling activity is detected as a change point (from 1–

rope to 0–no_rope). However, the beginning of the rope pulling
activity cannot be identified from video data in a similar direct

way. In particular, such an effort would require extracting poses

of a climber (e.g., as done in [10]) for which a different sensing

approach (i.e., depth camera) is better suited. Hence, we take a less

complex approach, which yet yields a good estimate of the activity

start, as we show later. Namely, by using the training dataset, we

measured that rope pulling activity lasts on average for 12.3 seconds.
Moreover, the standard deviation of 1.3 seconds suggested that an

individual activity duration tends to deviate only slightly from the

mean value. Taking these facts into account, we determine the start

of rope pulling activity by subtracting the observed mean duration

of 12.3s from the detected activity end timestamp.

5 EVALUATION AND DISCUSSION
We evaluate the proposed approaches for rope pulling detection by

using the video and sensor recordings, on the data collected during

the second climbing session consisting of five climbs. After the start

and the end timestamps of rope pulling activities were computed

Figure 5: (Top) Predicted object labels by retrained Reti-
naNet (red line) and ground truth labels (blue line) for video
frames in the test dataset. x-axis indicates the frame times-
tamp and y-axis indicates the prediction: 0: no_rope, 1: rope.
Climber’s trajectory is shownas a dotted grey line.When the
climber is on the wall, the prediction is rope, in the opposite,
when the climber is on the floor, the prediction is no_rope.
Prediction errors are visible at the beginning and end of an
ascent (the red line deviates from the blue line). (Bottom)
Class membership after thresholding defined in Equation 1.

by the proposed methods, every sample in the sensor dataset was

also manually annotated based on the acquisition timestamp. That

enables to compute the actual accuracy of the proposed methods

predictions.

We report detection accuracy using the Jaccard index-based mea-

sure for each rope pulling occurrence. Namely, the reported index

represents the degree of similarity (ranging from 0 to 1) between

two sets: one consists of sample timestamps automatically gener-

ated, and the other consists of sample timestamps in the ground

truth. As mentioned above, the true start and end of rope pulling
were manually transcribed from the video recordings of the climb-

ing session. The start time is taken when the climber grasps the

rope while the end of the activity is taken when the rope leaves the

sensor enhanced quickdraw. If𝑀 is the set of rope pulling sample

timestamps based on the ground truth and 𝐴 is the set of sample

timestamps that were automatically annotated as rope pulling, then
the recognition accuracy for the climb is calculated as the Jaccard

index of similarity for the two sets using 𝐽 (𝑀,𝐴) = |𝑀∩𝐴 |
|𝑀∪𝐴 | .. The

results are visualized for each climb independently in Figure 6. Ta-

ble 1 summarizes the evaluation results for each climb in the test

dataset.

The evaluation resulted in recognition rates of 91% for the hybrid

and 76% for the video-based approach, respectively. This difference

is statistically significant (t-test, 0.05 p). While the latter approach

resulted in generally more accurate activity detection, the video-

based method proved to be more precise in detecting specifically

the end of a rope pulling event.

An important aspect to consider is the complexity and the re-

quired resources of the two proposed methods. Both utilize video-

analysis: the hybrid approach is based on person detection and

employs a pre-trained network, which can be run on a CPU, but

for a real-time scenario GPU is required. The video-based method

involves transfer learning for a quickdraw detection which needs a

GPU for training. In our experiments, we have used a NVidia 2080
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Figure 6: Performance of rope pulling detection on the test
dataset. Orange: Manual annotation transcribed from the
video recording, blue: annotation generated using the hy-
brid approach, green: annotation generated using the video-
based approach.

Table 1: Performance of rope pulling detection using video-
based and hybrid approaches on the test dataset.

Climb id Hybrid Video

1 0.89 0.91

2 0.99 0.86

3 0.89 0.65

4 0.93 0.65

5 0.85 0.74

Average 0.91 0.76

Ti GPU
3
on a machine with 126 GB of RAM, 20 TB of SSD harddrive

and an 8 core CPU (Intel Xeon W-2123 3.6G). The training time was

about 4 hours for object detection (the data is 37089 images, with

the image size of 1920 × 1080 pixels).

Hence, we believe that the obtained results are satisfying, how-

ever, each has advantages and disadvantages that are discussed in

the following:

• Using the hybrid method we obtained a higher precision,

though the approach requires two data sources: a sensor and

a camera and therefore requires more effort to set up and

to maintain, e.g., the sensor batteries have to be changed

regularly.

• In both cases, video analysis is used, and the approval from

climbers has to be obtained so that they can be recorded.

• In both cases, when the climbing gym is crowded, and mul-

tiple climbers are climbing in close proximity, failures to

detect lowered events become more likely. While the pro-

posed methods can be extended to address tracking multiple

objects within the video [35], a camera-based detection ap-

proach may still be impractical in some settings due to the

large number of cameras that would need to be installed to

ensure the coverage of all routes.

6 CONCLUSION AND FUTUREWORK
In this paper, we have described two data analysis techniques that

can automatically detect discrete events in the sport climbing do-

main. Specifically, the focus of our investigation was the detection

3
https://www.nvidia.com/it-it/geforce/graphics-cards/rtx-2080-ti/

of events associated with the activity of pulling the rope after
the ascent is finished, using video and sensor data. The long term
goal of our work is to identify effective data analytics methods to

correctly label sensor data, namely, to mark a sensor reading with

semantic labels describing the activity performed at that point in

time. Sensor data augmented with this information can be further

used to train even more sophisticated Machine Learning methods,

aimed at precisely extract activity and performance information

from a large batch of test sensor data.

We have so far exploited state-of-the-art for object detection

techniques from computer vision to obtain 2D bounding boxes as

representation of climber’s motion. Using timestamps of lowered
events inferred from the motion analysis, we have considered video

and acceleration data separately for detecting the start and end of

rope pulling.
Although the results of evaluation are satisfying, there are as-

pects that need more attention in the future. First, a larger number

of participants and climbs will have to be included in the evaluation.

This will give insights into how well the methods performs in a

variety of climbing scenarios. There are two factors with implica-

tions on rope pulling duration that were not considered. Namely,

the activity will last longer for the higher routes and, secondly,

different climbers may pull the rope at different speed. Current

study involved two participants for which the standard deviation

of rope pulling duration was 1.1 seconds; thus lower than the stan-

dard deviation for only the training dataset, which consisted of

data of one participant. With increased number of climbers, the

average activity duration has to be revised. This may well result

in higher detection accuracy for the video-based method as the

standard deviation of rope pulling duration tends to decrease. Only

successfully completed climbs were used in the study, while in real

conditions, climbers may lower to the ground following a fall off the

wall. Partially climbed routes will presumably result in recognition

failures. This might not be a flaw if the intended used of the system

is counting the number of successfully completed climbs. However,

this problem could be mitigated by extending methods to include

fall detection, as done in [36], for example.

To get closer to the goal of making a rope pulling detection system
suitable for deployment, optimization for sensor battery consump-

tion would be desirable. Sensors attached to quickdraws require

batteries, which discharge fast if data is collected and transferred at

high frequency. In this study, data were recorded at the sampling

rate of 50Hz, thus allowing sensor to work only for some hours. In

the future we need to identify the lowest frequency (therefore the

most battery saving) that we can use so that event detection meth-

ods (such as the once described in this paper) still achieve satisfying

results. Business goals will determine what “satisfying” means. If

the major goal is to roughly estimate route usage, a lower accuracy

might be enough. Conversely, if the goal is to detect particular

climbing moves or situations within a climb, a higher frequency

might instead be needed.

Detection of the rope pulling activity is clearly useful for climb-

ing gym management. A byproduct is that the frequency of rope

pulling provides a direct measure of how often sections of the wall

are climbed as an indicator of popularity. Based on these methods,

a system for providing performance feedback to a climber could be

developed. Namely, the rope pulling activity segments a climbing
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session into individual climbs, thus climb duration and resting time

can be derived directly. In fact, a common method in endurance

training is to climb a route in quick repetitions with short rest inter-

vals between repetitions [29]. Further segmentation would make it

possible to detect climber’s performance at a finer granularity, i.e.,

in sections between rope clipping events or to detect problems (e.g.,

a falling event) that occur at specific parts of the route.

Of further interest is to devise techniques for activity tracking in

“bouldering” areas in climbing gyms, where climbing is done with-

out the use of the rope and quickdraws. These areas are equipped

with cameras for security reasons as climbers can get injured as

a result of a fall on the bouldering mat. A system that is able to

identify dangerous situations using video analysis techniques and

that warns climbing gym staff could improve the safety of the sport.

In conclusion, we believe that soon automatic systems that pro-

vide usage analytics and climbing performance feedback will be-

come a reality in every indoor sport climbing gym. The results

presented in this study show a promising step towards achieving

this goal.
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