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ABSTRACT
The automatic detection of climbers’ activities can be the basis
of software systems able to support trainers to assess the climber
performance and to define more effective training programs. We
propose an initial building block of such a system, for the unobtru-
sive identification of the activity of someone pulling a rope after
finishing the ascent. We use a novel type of quickdraw, augmented
with a tri-axial accelerometer sensor. The acceleration data gener-
ated by the quickdraw during the climbs are used by a Machine
Learning classifier for detecting the rope pulling activity. The ob-
tained results show that this activity can be detected automatically
with high accuracy, particularly by a Random Forest classifier. More-
over, we show that data acquired by the quickdraw sensor, as well as
the detected rope pulling, can also be used to benchmark climbers.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computing methodologies → Machine learning.

KEYWORDS
Sports analysis; Sensors; Climbing; Activity Recognition

ACM Reference Format:
Iustina Ivanova, Marina Andrić, Andrea Janes, Francesco Ricci, and Floriano
Zini. 2020. Climbing Activity Recognition and Measurement with Sensor
Data Analysis. In Companion Publication of the 2020 International Conference
on Multimodal Interaction (ICMI ’20 Companion), October 25–29, 2020, Virtual
event, Netherlands. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3395035.3425303

1 INTRODUCTION
In recent years, climbing has become a popular recreational and
competitive sport worldwide [1, 2], producing a growing interest
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in the development of innovative software solutions that could
support the training of both professional and amateur climbers.
Professional climbers follow rigorous training programs designed
by climbing coaches. A coach assesses the climber during a climbing
session by observation and then provides feedback by pointing
to the weaknesses in their technique and suggesting appropriate
training routes. Coaching is also desirable at amateur level; however,
due to the large number of climbing enthusiasts, this service cannot
practically be provided to each climber in indoor climbing gyms.
Automatic or semi-automatic climbing assessment systems have
the potential to support professional coaches, and to make coaching
more widely available.

In order to implement such training software solutions, one
should be able to automatically detect and classify climbing activi-
ties and actions (e.g., a fall). We are developing practical and user
acceptable solutions for that by exploiting the Internet of Things
(IoT) and Artificial Intelligence (AI). We aim at leveraging standard
climbing equipment and novel sensing technologies for unobtrusive
climbing activity recognition and performance assessment.

We present here the results of some field experiments that demon-
strate the potential of our approach. We have used a standard piece
of climbing equipment, namely a quickdraw, augmented with a
3-axial accelerometer sensor. This “Smart QuickDraw” is being de-
veloped in collaboration with Vertical-Life Climbing1. The experi-
ments were carried out at the Salewa Cube2 and Vertikale3 climbing
gyms, and involved two of the authors of this paper. The specific
goal that we consider in this article is the detection of climbing
episodes from a continuous stream of accelerometry data obtained
from the quickdraw movements. While climbing episodes detection
can be easily addressed by asking explicit climber feedback (e.g., by
using a custom-designed app or by instrumenting the climbing wall
with physical buttons), we are interested in developing solutions
that are as unobtrusive as possible. Hence, we have developed a
Machine Learning (ML) solution for detecting a particular type of
climber’s activity, namely the rope pulling, which happens at the
end of a climb. Our solution relies only on the analysis of the data
generated by smart quickdraws. We have compared some ML tech-
niques, and our findings support the hypothesis that acceleration
data collected by the sensors attached to quickdraws can be used

1https://www.vertical-life.info/de/gym
2http://www.salewa-cube.com/en/
3https://www.vertikale.it/
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to efficiently and automatically recognize activities performed by
climbers, and in particular, the act of pulling the rope. Our results
demonstrate the superior performance of a Random Forest clas-
sifier that can detect almost all the target rope pulling activities
present in the test data. Moreover, we show that the data acquired
by the quickdraw sensor and the result of the rope pulling detection
process can also be used to provide insights into the fluency of the
climbing (i.e., smoothness of the hip trajectory).

2 RELATEDWORK
Only a handful of studies attempted to design systems for automatic
detection and classification of climbing activities and assessment of
climbing performance. In this section, we review relevant studies,
focusing on the usage of devices for activity sensing and on ML
techniques for the detection of relevant activities from sensors’
measurements.

Previously published approaches deal with automatic detection
of the following climbers activities/actions: falling, gripping the
hold, traction, postural regulation, immobility and hold interaction.
The raw data related to these activities are generally recorded using
wearable accelerometer sensors placed on the climber’s body. These
sensors generate tri-axial acceleration signals when the climber
moves the respective body part. The research method in [8, 10]
requires a climber to wear a pair of accelerometers on wrists, the ap-
proach in [5] involves additionally the placement of accelerometers
on climber’s legs and pelvis. A less invasive approach is proposed
in [11], where a single accelerometer is placed on the climber’s ear.
In another work [4], an accelerometer and a barometric altimeter
are placed on a climbing harness. In [13], the climbers carried an
inertial measurement unit on their hip and the unit was used to
evaluate their climbing fluency. It is worth mentioning that several
preliminary studies (e.g., [7, 9, 14]) proposed video camera-based ac-
tivity tracking systems, which, although promising, are not suitable
for indoor climbing settings due to the occlusion problem.

Climbing activity recognition is typically modeled as a super-
vised classification problem for which the sensor-recorded training
data is obtained via experiments involving climbers performing
specified activities. Generally, the classification is performed not on
raw sensor data but, instead, on feature vectors extracted from raw
data. In the case of acceleration signals, classification performance
can be further tuned by removing the low-frequency component,
which is mainly tied to the terrestrial gravity [3]. Previous studies
utilized statistical models [5], logistic regression and Restricted
Boltzmann Machines [10], or Random Forest, Support Vector Ma-
chine, and Naive Bayes classifier [6]. Some research [4, 6] reported
promising results of convolutional neural networks.

The objective of our study differs from the mentioned studies as
the activity we focus on, i.e., rope pulling has not been studied yet.
With a view on practical deployment, we utilize sensors embedded
in the climbing equipment (quickdraw), unlike previous approaches
that require the climber to wear sensors on their body.

3 CASE STUDY: ROPE PULLING DETECTION
In sport climbing, the climber relies on fixed bolt anchors that are
attached to the wall for protection. A particular piece of equipment,
the quickdraw, is clipped to each bolt on one side, while the other

side serves the purpose of holding the climbing rope. Quickdraws
are typically lined up into a straight series, and are usually shared
between multiple routes. A route is a climbing path composed of
single-color holds, which the climber must use exclusively during
the ascent. Finally, a configuration of several routes that share the
same quickdraws constitutes a line. Our case study is dealing with
lead climbing, where the climber, while ascending the route, peri-
odically clips the rope through the quickdraws for safety, causing
them to move according to her/his actions. The act of pulling the
rope to remove it at the end of the climb is at the center of our
attention.

An overview of the designed system for rope pulling detection
and climbing fluency assessment is shown in Figure 1. Quickdraw
movements are captured using a small accelerometer sensor at-
tached to the strip in the central part of the quickdraw. This is a
Movesense4 sensor that is configured to sample tri-axial acceler-
ation data at 50Hz frequency, i.e., one sample every 20ms. Such a
sampling rate provides sufficiently detailed movement information,
considering that the human movement range is between 0.2Hz and
20Hz. An iPhone X, running the “Movesense Showcase” mobile
app5 and connected to the accelerometer by Bluetooth, is used to
record sensor readings. With a view on practical deployment, we
adopted an approach based on a unique sensor-enhanced quick-
draw, placed on the second-lowest position from the ground.

The full process of rope pulling recognition (see Figure 2) consists
of five steps. Firstly, the acceleration generated by the quickdraw
movement is separated from the acceleration due to gravity using a
low pass filtering technique [3]. In the following step, the full sensor
data time series is partitioned into shorter overlapping intervals of
sensor data (windows of a few seconds of data). A feature vector
for each data window is then built by aggregating sensor data. This
is then fed into ML classifier that discriminates rope pulling from
non-rope pulling on a per-window basis. To locate rope pulling
segmentsmore accurately, we then apply a procedure that translates
window labels into labels of individual samples. In the final step,
the sequence of predicted labels, one for each time point, undergo
temporal smoothing for removing outliers.

4 EXPERIMENT DESCRIPTION
The data for training and evaluating the proposed activity recog-
nition approach was recorded during the lead climbing activities
of two climbers (A and B) performed on four lines in two climbing
gyms. Five different routes on these lines were climbed in total, with
difficulty levels selected according to the skill levels of both climbers.
All climbs except one were completed, with climbers reaching the
topmost quickdraw before lowering to the ground. Four different
datasets (one for each line) were collected; they comprised 17 climbs
in total. The average duration of rope pulling activity was 11.5s, and
its standard deviation was 2s. The climbs were also video captured
in order to later manually label the sensor data. We considered two
activity labels, namely, ‘not rope pulling’ and ‘rope pulling’.

Our activity classification approach uses the sliding window
technique that has been shown to be effective in previous studies
of activity classification [12]. With this technique, the acceleration

4https://www.movesense.com
5https://apps.apple.com/us/app/movesense-showcase/id1439876677
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Figure 1: System overview, see text for description (climbing pictures courtesy by Petzel.com).

Figure 2: Overview of rope pulling recognition procedure.

signal obtained after gravity removal is divided into windows of
fixed length. We chose a window size of 400 samples, correspond-
ing to 8 seconds of accelerometer data, because it can sufficiently
distinguish rope pulling from the activity of clipping the rope into
a quickdraw (i.e., clipping activity). To reduce information loss, we
enforced a 95% overlap between two consecutive windows. As a
result, 7493 windows labeled as ‘not rope pulling’ and 236 windows
labeled as ‘rope pulling’ were generated. The ground truth label of
each window was assigned to be ‘rope pulling’ if no less than 90%
of its samples belonged to the rope pulling activity.

We calculated time-domain and frequency-domain features that
represent the window data in a compact way. We used typical
time-domain features such as mean, standard deviation, median,
maximum, and minimum of acceleration values. Frequency do-
main features were generated by applying Fourier transform on a

window of sensor data. In summary, we identified 60 features per
window. These features were used to train and evaluate supervised
classification methods for data windows.

Four classification methods were selected, namely, Random For-
est, Logistic regression, CatBoost and AdaBoost [15]. Each classifier
predicts a probability that a window spans the rope pulling activ-
ity. Predicted window probabilities were then used to estimate a
probability that a sample belonged to the ‘rope pulling’ class in a
procedure that simply finds the maximum probability predicted for
a window containing the sample. The sample labels are then deter-
mined by applying a decision threshold on estimated probabilities.

To evaluate the overall performance of our rope pulling detection
system, we performed a 10-fold cross-validation on each dataset
individually and globally on the combination of all four datasets.
The same training and testing data sets were used for each classifier
to avoid any variability arising from different random seeds.

After predictions on a per-sample basis were obtained, simple
smoothing for outlier elimination was applied (based on a 400
samples window). The quality of rope pulling segment detection
was estimated using the Jaccard index-based measure. The index
represents the ratio between the size of intersection of the actual
and predicted rope pulling segments and their union size. Shown
results represent the average test classification result of each train-
test repetition.

5 RESULTS AND DISCUSSION
The results of the 10-fold cross-validation performed on the combi-
nation of the four datasets clearly show that Random Forest outper-
forms the other investigated classifiers. Table 1 reports the precision
and recall metrics when a standard decision threshold of 0.5 is ap-
plied to the raw probability that a sample is predicted to be in the
‘rope pulling’ class.

Random Forest was further used in 10-fold cross-validation per-
formed on each dataset individually. Each sequence of predicted
‘rope pulling’ samples was regarded either as true positive (TP) or
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Table 1: Performance of rope pulling detection using differ-
ent classifiers on raw prediction results.

Method Precision Recall
Random forest (n=100) 0.85 0.87
CatBoost 0.57 0.92
AdaBoost 0.70 0.93
Logistic regression 0.72 0.78

false positive (FP) depending on whether the sequence overlapped
with the ‘rope pulling’ sequence on the basis of the ground truth
labels (GT). Thus, the sum of TP and FP sequences represents the
number of rope pulling occurrences as predicted by the classifier.

Table 2: Performance of rope pulling detection using the ran-
dom forest classifier on different datasets.

Dataset GT TP JI FP
Salewa 5 4 0.86 0
Vertikale1 4 4 0.92 0
Vertikale2 4 4 0.99 0
Vertikale3 4 4 0.95 0
Overall 17 16 0.93 0

Table 2 shows the computed scores. Additionally, the average
Jaccard index of similarity between the predicted intervals of rope
pulling and the ground truth is shown in the column JI. Overall, the
experiments resulted in the detection of 16 out of 17 rope pulling
activities, with the average Jaccard index of 0.93 (1 indicates perfect
overlap).

Our results indicate that the recognition system presented here
is able to detect with high precision both the number of rope pulling
activity occurrences in a session and the activities spanning times.
However, there is potentially a trade-off between the two goals
which can be controlled by the decision threshold parameter.

Figure 3: Comparison between the climb duration and the
quickdraw movement magnitude for two climbers on five
different routes (climbs on the same route are represented
with the same color).

After having identified the rope pulling segments, we applied
a threshold of 0.5g on the (gravity removed) motion magnitude of

the enhanced quickdraw to detect the starting time point of each
subsequent climb. The sixteen segmented climbs, completed with-
out a fall, on four different lines, and performed by two climbers,
were then represented along two dimensions. Climbing time was
represented on one axis as an obvious measurement of climber’s
ability on a given route. It represents the time passed from the
moment the climber clipped the rope through the sensor-enhanced
quickdraw until the climber pulled the rope. The second axis re-
flects the cumulative motion magnitude 𝑀 of the sensor-enhanced
quickdraw during a climb per unit of time:

𝑀 = 𝑡−1

√√√
𝑁∑
𝑖=0

𝑎𝑥 (𝑖)2 + 𝑎𝑦 (𝑖)2 + 𝑎𝑧 (𝑖)2 (1)

In the equation, 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are acceleration measurements along
the 𝑥 , 𝑦 and 𝑧 axes at the observation times 𝑖 = 1, . . . , 𝑁 , and 𝑡 is
the duration of the climb in seconds.

The magnitude axis captures the overall intensity of sensor-
enhanced quickdraw movements during a climb. Clearly, this quick-
draw is affected when the climber grabs and pulls the rope up to clip
it into the following quickdraw. However, as the rope is attached
to the climber’s harness, the signal captured from the quickdraw
exhibits a higher magnitude when the climber’s center of mass
moves away from and towards the climbing wall throughout the
climb compared to when the climber’s center of mass is consis-
tently close to the wall. The results presented in Figure 3 illustrate
these opposite movement strategies, i.e., one that is slower but uses
less energy for the climb to be successfully completed (climber A)
while the second requires more energy, but faster, for successfully
completing the climb (climber B).

6 CONCLUSIONS AND FUTUREWORK
In this article, we have addressed an activity recognition problem
by using a sensor embedded in the climbing-wall (smart quick-
draw). The obtained results show that the applied ML methods,
in particular a Random Forest classifier, can be effectively used to
detect the target rope pulling activity in a continuous stream of
accelerometric data. There are some limitations to our work. Firstly,
the collected datasets contain only one type of rope pulling (when a
person pulls the rope from the first quickdraw); however, climbers
sometimes pull the rope from the opposite side i.e., the top located
quickdraw. In addition, we did not evaluate the system performance
for a large number of different routes and participants performing
rope pulling (there were two persons who pulled the rope in the
current study). Further tests should reveal whether the recognition
system is subject- or line-dependent by employing leave-one-out
cross-validation. Of immediate interest is to detect the activity of
clipping the rope into a quickdraw. This would be especially useful
for extending the proposed systems for recognizing the route of a
recorded ascent. We are also working with expert climbing trainers
in order to introduce the proposed solutions into their routinary
training programs.
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