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A B S T R A C T

The replacement of fossil fuels for producing energy with renewable sources is crucial to limit the climate
change effects. However, the unpredictable nature of renewables, like sun and wind, complicates their
integration within the power systems. This problem can be faced with the introduction of Hybrid Renewable
Energy Systems (HRESs) where several energy sources can be incorporated. A key aspect is the assessment of
the HRES configuration, which is fundamental to obtain a feasible system from both technical and economic
points of view. In this paper, a novel Mixed Integer Linear Programming (MILP) optimization algorithm has
been developed to design a tool capable of assessing the optimal sizing of a HRES. The algorithm has been
applied to a real case study of a mountain hut located in South-Tyrol (Italy) with a hybrid system composed
by solar, wind and diesel generators together with a battery storage. The algorithm compares several scenarios
providing the optimal configurations of the HRES, which are characterized by different costs and energy
deficits. This tool helps engineers to identify the best trade-off between costs and energy deficits in the planning
phase of a HRES, still granting the demand of the users as well as the constraints.
1. Introduction

The continuous development of Renewable Energy Systems (RES)
has become a key aspect in many Countries all over the World with
the aim of guaranteeing a clean and sustainable development, as well as
to contrast the effects of the climate change. Even though the replace-
ment of fossil fuels with renewables for producing energy is nowadays
crucial, the use of traditional sources is continuously increasing. In
such a context, the use of non-fossil fuels is still low for preventing
this continuous growth [1]. One of the main reasons that limits the
replacement of fossil fuels with renewables is their fluctuating and
unpredictable nature, which complicates the integration within the
power systems [2]. The characteristics of solar and wind energies may
lead to an excess of energy production that would be wasted if the
balance between the load requirements and the generated energy does
not match. For instance, a global amount of curtailed electrical energy
of 940.8 billion kWh was estimated in the year 2013 [3].

Locations that have few connections with the national grid, or
those that have not been electrified so far, are typical examples where
the introduction of renewables would be crucial for decreasing the
environmental burden. When considering the electrification of rural
areas through mini-grids, the lack of methodologies related to the
assessment of the energy needs can lead to an inefficient system design.

∗ Corresponding author.

Gambino et al. [4] proposed a solution that takes into account both
specific needs and context conditions, characterizing a community to
be electrified. They developed a methodology that can be applied per
each different case based on data collection methods, aiming to achieve
a high accurate description of the electricity consumption. Hybrid
Renewable Energy Systems (HRESs) are currently being developed in
order to exploit the sources available in a determined area instead
of adopting solutions based on convectional generators or power grid
extensions, thus resulting in a more profitable use of these sources
on both environmental and economic points of view [5,6]. HRESs are
outlined by different configurations: for instance, they can be composed
by photovoltaic (PV) panels coupled with batteries [7], wind turbines
paired with batteries [8], PV panels mated with wind turbines [9] or by
coupling PV panels and wind turbines together with a Pumped Hydro
Energy Storage (PHES) [10]. In addition, other configurations can be
PV–wind–battery [11,12], PV–wind–hydrogen [13], PV–wind–battery–
diesel generator [14], PV–Wind–Combined Heat and Power (CHP) [15],
PV–wind–biomass [16] and PV–biogas generator–PHES with battery
storage [17]. Further examples can be found in [18].

When considering the installation of an off-grid HRES, one of the
main challenges is the evaluation of the optimal design, which is
related to the selection of the optimal number and size of the system
196-8904/© 2020 Elsevier Ltd. All rights reserved.
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Nomenclature

PV system

𝛼 Absorptivity of the cell [–]
𝛽 Efficiency loss coefficient of the solar cell

[◦C-1]
𝜂BOS Balance of system efficiency [–]
𝜂c Cell efficiency [–]
𝜂n,c Rated efficiency of the cell in STC [–]
𝜏 Transmissivity of the cell [–]
𝐴eff Net cell opening area [m2]
𝐸𝑃𝑉 Energy delivered by the PV system [kWh]
𝐺 Global Irradiance on the panel tilted sur-

face [kWh/m2]
𝑁𝑂𝐶𝑇 Nominal Operating Cell Temperature of the

PV panel [◦C]
𝑇A Ambient temperature [◦C]
𝑇C Cell temperature [◦C]

Wind turbine system

𝜌𝑎𝑖𝑟(𝑆𝑇𝐶) Air density in STC [kg/m3]
𝜌𝑎𝑖𝑟 Air density [kg/m3]
𝐸𝑊 𝑇 Energy delivered by the wind system

[kWh]
𝑃𝑅 Rated power delivered by the wind turbine

in STC [kW]
𝑃𝑊 𝑇 (𝑆𝑇𝐶) Power delivered by the wind turbine in STC

[kW]
𝑃𝑊 𝑇 Power delivered by the wind turbine [kW]
𝑊𝑐𝑢𝑡−𝑖𝑛 Cut in speed of the wind turbine [m/s]
𝑊𝑐𝑢𝑡−𝑜𝑢𝑡 Cut out speed of the wind turbine [m/s]
𝑊ℎ𝑢𝑏 Wind speed at hub height [m/s]
𝑊ℎ Wind speed measured at the anemometer

height [m/s]
𝑊𝑅 Wind speed corresponding to the rated

power [m/s]
𝑧0 Surface roughness [m]
𝑧ℎ𝑢𝑏 Hub height [m]

Diesel generator

𝜂𝑔𝑒𝑛 Efficiency of the diesel generator [–]
𝜌𝑓𝑢𝑒𝑙 Fuel density [kg/m3]
𝐸𝑀𝑜𝑡 Energy delivered by the Diesel generator

[kWh]
𝐹𝐶 Fuel consumption [g/s]
𝐿𝐻𝑉𝑓𝑢𝑒𝑙 Lower Heating Value [MJ/kg]
𝑃𝑒𝑙 Electrical power [kW]
𝑃𝑟 Rated power [kW]

Battery storage

𝜎 Self discharge rate [–]
𝐵𝐶 Battery capacity [kWh]
𝐸𝑏𝑎𝑡𝑡 Energy delivered or stored [kWh]

MILP model

𝐶𝐵𝑎𝑡𝑡 Total NPC of a battery unit [e]
𝐶𝑃𝑉 Total NPC of a PV unit [e]

components [19]. To achieve this goal, optimization techniques that
are divided into mathematical and metaheuristic methods have to
be used [20]. Mathematical methods are suitable for solving linear
2

𝐶𝑊 𝑇 Total NPC of a WT unit [e]
𝑁𝐵𝑎𝑡𝑡 Total number of batteries units [–]
𝑁𝐷𝑖𝑒𝑠𝑒𝑙 Total number of diesel generators [–]
𝑁𝑃𝑉 Total number of PV panels [–]
𝑁𝑊 𝑇 Total number of wind turbines [–]

NPC of the HRES

𝐶𝑓𝑢𝑒𝑙 Fuel cost [e]
𝐶𝐼𝑁 Initial capital cost [e]
𝐶𝑂&𝑀 Operation and maintenance cost [e]
𝐶𝑅 Replacement cost [e]
𝐷𝑓 Discount factor [–]
𝑓 Inflation rate [–]
𝑖 Real discount rate [–]

Other abbreviations

𝐵𝑂𝑆 Balance of System
𝐸𝐿𝑜𝑎𝑑 Energy absorbed by the load [kWh]
𝐺𝐻𝐺 Greenhouse gas
𝐻𝑅𝐸𝑆 Hybrid Renewable Energy System
𝑀𝐼𝐿𝑃 Mixed Integer Linear Programming
𝑁𝑃𝐶 Net Present Cost
𝑆𝑇𝐶 Standard Test Conditions

problems and allow engineers to obtain the exact optimal solution.
On the other hand, metaheuristic methods find the optimal solution
iteratively, thus requiring lower computational efforts: however, they
provide an approximate solution that is not always the exact one [21].
Among the first ones, Linear Programming (LP) and Mixed Integer
Linear Programming (MILP) have been widely applied to the HRESs
optimization. Morais et al. [22] used this technique to compute the
optimal operation scheduling of an isolated system constituted by PV
panels, wind turbines and a fuel cell coupled with a storage. Ferrer
et al. [23] developed a MILP model, which has been applied to a case
study in Peru, in order to optimize hybrid off-grid PV–wind systems.
The model computes the optimal solution considering various consump-
tion points with the aim of minimizing the objective function that
represents the initial investment cost of the system. Malheiro et al. [24]
used a MILP model to design an isolated PV–wind–diesel with a battery
storage where its Levelized Cost Of Energy (LCOE) has been used as
objective function. Among the second ones, Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) methods have been widely
employed to compute the optimal sizing of HRESs. Zhao et al. [25]
used a GA for a multi-objective optimization of a system composed by
PV panels, wind turbines and a diesel engine coupled with a battery
storage. The multi-objective optimization aimed to minimize the life-
cycle cost, as well as the system pollutant emissions, and maximize the
penetration of renewables. Stoppato et al. [26] developed a PSO model
to optimize the cost of a PV–PHES system in a rural village located in
North Nigeria.

However, HRESs have been also investigated by means of com-
mercial software like HOMER. For instance, HOMER has been used
in [27,28] and [29] to study an off-grid PV–wind–hydro system coupled
with a battery storage and a back-up diesel generator, while in [30] it
was used to assess the optimal planning of a hybrid system composed
by PV panels, diesel generators and a battery storage as well. Along the
same line, the IHOGA [31] software was developed by the University
of Zaragoza and applies optimization models, based on GA, to analyze
HRESs as discussed in [32] and [33]. In several cases, the techno-
economic optimization of a HRES is based on simplified assumptions
that provide an optimal result but, if the external conditions vary, they
can lead to either under-sized or over-sized systems. The most common
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assumptions regard the load profile, which is considered to be the same
per each day of the year, and the shape of both solar and wind energies.
Indeed, the selection of the optimal configuration of a HRES cannot
be assumed as unique for an application where the daily load profile
and the sources shape vary. For this reason, an assessment of possible
optimal solutions can help engineers to choose the best configuration
that meets the system needs.

In this work, a MILP optimization model has been developed with
Matlab© [34] and applied to a case study of a mountain hut, located in
the Italian region of South-Tyrol (Italy), in order to assess the optimal
sizing of a PV–wind–diesel generator system together coupled with a
lead-acid battery storage. The paper analyzes the possibility of electri-
fying the hut through a HRES: in this case, the high level of complexity
related to the system optimization regards the strong variability of the
load, as well as the high level of fluctuations of both sun and wind
sources. The main novelty of the work is the methodology adopted
to assess how the configuration of a HRES, thus the optimal sizing,
can vary depending on the variability of both load and renewables,
thus allowing engineers to analyze several realistic cases corresponding
to a specific time span. Specifically, the optimization code has been
run considering different possible boundary conditions and the design
of the system takes into account all these variations. In addition, the
effect of the reference time span selected for the optimization process
is studied and discussed. The MILP model also shows how the optimal
output, thus the sizing of the system, can change according to the
parameters involved in the process change, providing a complete tool
that can be adapted to different applications and targets.

The paper is structured as follows: Section 2 presents the case study,
the models of the various components related to the HRES and the
MILP model as well. Section 3 shows the results of the simulations and
Section 4 reports the conclusions of the work.

2. Research and methods

2.1. Problem definition and goal of the work

Most of the works available in literature that deal with the optimal
sizing of the HRESs provide results in a time span of 24 hours. They are
based on the shapes of both load profile and energy production from re-
newables. In other works [35,36], standard hours are selected with the
aim of representing the whole dataset properly, thus providing results
that can be compatible and extendable to the entire time period. This
strategy is particular suitable to lower the computational efforts [37]
in the calculation processes.

Sometimes, the daily fluctuations of the shapes of both load profile
and renewable energy production do not allow engineers to choose
a reference day or a significant time span to extend the results since
they complicate the computation of the optimal system configuration,
as well as the definition of the optimization strategy. In these cases,
an assessment of the various optimal configurations, which depends on
the dataset variability, is required in order to avoid a ‘‘wrong design’’
of the system that otherwise would not meet the real needs of the load.

The problem addressed in this paper regards the assessment of the
optimal sizing of a HRES where the load profile, sun and wind curves
present a high daily variability in a considered time period. An algo-
rithm has been developed in order to analyze the daily configuration of
the system, showing how the optimization results can be significantly
affected by the variability of both load and renewable energies profiles.
Firstly the developed model was run considering each day of a specific
time period and then the whole month. The main benefit behind this
methodology is the possibility of comparing and analyzing several
results. Moreover, it provides a general figure of the system behavior in
the considered time period, as well as detailed information about the
trend of both load and renewable energy sources per each day together
with the system response.
3

Fig. 1. Maximum, minimum and average power absorbed by the load per day.

Fig. 2. Maximum, minimum and average solar radiation per day.

The goal is to provide a tool capable of depicting various con-
figurations of a HRES, thus helping engineers to assess and choose
the size that best meets the energy demand using particular system
requirements. The developed algorithm that has been used in the
present case study is described in Section 2.2.

2.2. Case study

The algorithm has been applied to a case study of a mountain hut
located at an altitude of 2200 m a.s.l., precisely at a latitude of 46.819◦
and a longitude of 11.442◦, in South-Tyrol (Italy) that is not connected
with the national grid. The opening period of the hut is related to the
summer season, namely from May to October, and its energy needs are
satisfied through a diesel generator. The fuel consumption has been
estimated to be about 15,000 𝑙 per season, leading to an emission
of CO2 close to 10 tons. The power absorbed by the load can vary
significantly in the daily hours and the days as well. Fig. 1 shows the
maximum, minimum and average power absorbed by the load per each
hour of the day.

The considered area is characterized by good sun and wind sources
that could potentially supply all the energy needs to the hut. However,
they are also outlined by a high variability that complicates the sizing
of the system. The maximum, minimum and average recorded values of
the Global Irradiance on the panel tilted surface (𝐺), which is expressed
in [kWh/m2], and the wind speed, which is expressed in [m/s], are
shown in Figs. 2 and 3, respectively.

The data used to run the simulations have been collected through
measurement campaigns and online tools. Precisely, the load profile
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Fig. 3. Maximum, minimum and average wind speed registered in the month of June.

Fig. 4. HRES layout.

and the wind speed were recorded in June 2018 through a power meter,
which was installed in the main power line of the electrical control
cabinet, and an anemometer. The month of June has been chosen since
it is the one that presents the highest number of people in the hut. The
data were recorded each minute in order to obtain, at the end of the
measurements, the hourly averaged values of the absorbed power and
wind speed. The global irradiance above the site in June 2018 were
downloaded from the Photovoltaic Geographical Information System
(PVGIS) [38]. It is worth noticing that the power generated, delivered
or absorbed by the battery storage has been considered constant in each
time interval: therefore, the produced power corresponds to the final
energy production.

2.3. HRES components modeling

The location where the HRES will be installed is characterized by
high solar and wind sources. Therefore, the HRES will be composed
by PV panels, wind and a diesel generators coupled with the battery
storage. Fig. 4 shows the layout of the system. Sections 2.3.1–2.3.3
describe the mathematical model of the PV system, wind turbines
system and the diesel generator, respectively, while the one related to
the battery storage is assessed in Section 2.3.4.

2.3.1. PV system modeling
The PV system has been modeled according to [39] considering a

sharp polycrystalline module [40], whose characteristics referring to
Standard Test Conditions (STC) are listed in Table 1. The Direct Current
DC power that is delivered by the PV system was computed through
4

Table 1
Characteristics of a sharp poly crystalline PV panel at STC.

Parameter Value Unit of measure

Net cell opening area (𝐴𝑒𝑓𝑓 ) 1.47 m2

Cell efficiency at STC (𝜂𝑛,𝑐 ) 0.14 −
Power peak 240 W
Efficiency Loss Coefficient (𝛽) 0.0044 ◦C−1

Eq. (1), where 𝜂𝑐 is the cell efficiency, 𝐴eff is the net cell opening area
and 𝐺 is the global irradiance on the panel tilted surface.

𝑃𝑃𝑉 −𝐷𝐶 = 𝜂𝑐𝐴𝑒𝑓𝑓𝐺 (1)

In order to calculate the effective power delivered by the PV system,
the losses related to the Balance Of System (BOS) were considered.
These losses include several parameters that take into account the
effective performance of the system components, such as the frequency
converter, wirings, batteries, support racks and switches. The AC power
delivered by the PV system is calculated through Eq. (2), considering
the BOS efficiency 𝜂𝐵𝑂𝑆 equal to 85%.

𝑃𝑃𝑉 −𝐴𝐶 = 𝑃𝑃𝑉 −𝐷𝐶 ⋅ 𝜂𝐵𝑂𝑆 (2)

In this model, the performance of the panels were evaluated under
real operating conditions: in particular, the effect of the temperature
and the solar radiation were considered for the evaluation of the cell
efficiency 𝜂𝑐 , as expressed by Eq. (3):

𝜂c = 𝜂n,c
[

1 − 𝛽(𝑇C − 25) + 0.12 𝑙𝑜𝑔 𝐺
1000

]

(3)

where 𝜂𝑛,𝑐 is the rated efficiency of the cell in STC, 𝛽 is the efficiency
loss coefficient of the solar cell, with increasing temperature, expressed
in [◦C-1], and 𝑇𝐶 is the cell temperature. Along the same line, Eq. (4)
evaluates 𝑇𝐶 , where 𝑇𝐴 is the ambient temperature, NOCT is the Nomi-
nal Operating Cell Temperature of the PV panel, 𝜏 is the transmissivity
of the cell and 𝛼 is the absorptivity.

𝑇C = 𝑇A + 𝐺
800

(𝑁𝑂𝐶𝑇 − 20)
(

1 −
𝜂c
𝜏𝛼

)

(4)

2.3.2. Wind turbine system modeling
The power produced by a wind turbine depends on the wind speed

at the hub. Knowing the wind speeds, the produced power is obtained
directly from the power curve of the turbine supplied by the man-
ufacturer. Generally, the anemometers are located at a lower height
than the hub one: therefore, Eq. (5) calculates the effective wind speed
considering the most used formulation for heights lower than 150 m.
Eq. (5) computes the values at different heights taking into account
the surface roughness of the installation site, whose typical values are
reported in [41].

𝑤ℎ𝑢𝑏 = 𝑤ℎ ⋅
𝑙𝑛

(

𝑧ℎ𝑢𝑏
𝑧0

)

𝑙𝑛
(

𝑧𝑎𝑛𝑒𝑚
𝑧0

) (5)

Knowing the wind speeds at the hub height, the power output of a
wind turbine is computed by means of its power curve. As described
by Eq. (6), the wind turbine starts to generate power when the value
of the wind speed reaches the cut-in one 𝑤𝑐𝑢𝑡−𝑖𝑛. The power output
increases with the increasing wind speed until its rated value 𝑃𝑅 is
reached, corresponding to a wind speed 𝑤𝑅. Starting from 𝑤𝑅 to the
cut-out speed 𝑤𝑐𝑢𝑡−𝑜𝑢𝑡, the power output does not increase anymore,
thus remaining constant and equal to 𝑃𝑅. Beyond the value of 𝑤𝑐𝑢𝑡−𝑜𝑢𝑡,
the turbine stops to generate power to prevent failures. Then, the power
curve of a possible wind turbine to be installed in the analyzed site is
shown in Fig. 5.

𝑃𝑊 𝑇 (𝑆𝑇𝐶) =

⎧

⎪

⎨

⎪

0, if 𝑤𝑡 < 𝑤𝑐𝑢𝑡−𝑖𝑛 or 𝑤𝑡 > 𝑤𝑐𝑢𝑡−𝑜𝑢𝑡
𝑃𝑖, if 𝑤𝑐𝑢𝑡−𝑖𝑛 ≤ 𝑤𝑡 < 𝑤𝑅 (6)
⎩

𝑃𝑅, if 𝑤𝑅 ≤ 𝑤𝑡 ≤ 𝑤𝑐𝑢𝑡−𝑜𝑢𝑡
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Fig. 5. Possible power curve of a wind turbine eligible for the site of interest.

Fig. 6. Fuel consumption curve of the diesel generator [43].

It is worth noticing that the power output reported in Fig. 5 con-
siders an air density 𝜌 of 1.225 kg/m3 in STC (𝜌𝑆𝑇𝐶 ). In case of a
different air density, Eq. (7) corrects the power output of the wind
turbine 𝑃𝑊 𝑇 . In this case study, an air density of 1.007 kg/m3 has been
considered [42].

𝑃𝑊 𝑇 = 𝑃𝑊 𝑇 (𝑆𝑇𝐶) ⋅
𝜌𝑎𝑖𝑟

𝜌𝑎𝑖𝑟(𝑆𝑇𝐶)
(7)

2.3.3. Diesel generator modeling
A diesel engine has been chosen as generator, which consists on a

3.5 kW engine described in [43]. A greater size of the generator has
not been chosen due to the implicit goal of maximizing the use of
renewable energies. A larger generator would have added an additional
constraint to limit the power output in determined cases. Certainly,
this would have led to a better overall optimization, but also let the
generator operate outside its best efficiency range, thus lowering the
performance. The fuel consumption and the efficiency curves reported
in [43] were used to model the power generated by the diesel engine.
The fuel consumption of the generator is calculated with Eq. (8), which
represents the fuel consumption curve of the engine fed by the diesel
fuel. It depends on the generated electrical power 𝑃𝑒𝑙 and a binary
variable 𝑃𝑔 that assumes the value of 0 or 1 whether the diesel generator
is turned off or on, respectively. The coefficients 𝜙 and 𝜓 have been
obtained through laboratory tests and their respective values are equal
to 0.087 g/kW and 0.127.

𝐹𝐶 = 𝜙 ⋅ 𝑃𝑒𝑙 + 𝜓 ⋅ 𝑃𝑔 (8)

Fig. 6 shows the fuel consumption curve experimentally obtained
in [43]. The fuel consumption is expressed in [g/s] (Y-axis) as a
function of the electrical power (X-axis), which is expressed in [kW].

The efficiency of the diesel generator is calculated with Eq. (9),
which corresponds to the ratio between the produced energy and
5

Fig. 7. Efficiency curve of the diesel generator [43].

the one provided by the fuel. The efficiency curve of the considered
generator is shown in Fig. 7.

𝜂𝑔𝑒𝑛 =
3.6 ⋅ 𝑃𝑒𝑙

𝜌𝑓𝑢𝑒𝑙 ⋅ (𝐹𝐶 ⋅ 𝐿𝐻𝑉𝑓𝑢𝑒𝑙)
(9)

𝐿𝐻𝑉𝑓𝑢𝑒𝑙 represents the Lower Heating Value (LHV) of the fuel
and 𝜌𝑓𝑢𝑒𝑙 is the fuel density equal to 42.6 MJ/kg and 0.828 kg/l,
respectively.

If a general motor is considered and the fuel consumption curve is
not provided by the manufacturer, a simplified fuel consumption curve,
which correlates the generator rated power to the generated electrical
power, can be used [44].

2.3.4. Battery storage modeling
The battery storage in a HRES plays a key role since it stores the

excess of energy produced by renewable sources, as well as to deliver
it to the load during the high demand. Lead–acid batteries are chosen
to model the storage. This type of battery is more suitable for climates
subjected to low temperatures, which can be sometimes lower than 0
◦C also in summer seasons, as it occurs in this case study. The energy
that can be delivered or stored by the batteries at each time interval
depends on the one that is already present in the battery 𝐸batt , the self
discharge rate 𝜎 and the energy balance between the generators and the
load. During the discharging phases, the batteries supply the remaining
energy to the load. This amount of energy is evaluated by means of
Eq. (10). When the energy produced by the generators exceeds the load
requirements, this overproduction can be stored in the batteries. The
amount of the stored energy is expressed through Eq. (11).

𝐸𝑏𝑎𝑡𝑡(𝑡) = 𝐸𝑏𝑎𝑡𝑡(𝑡 − 1) ⋅ (1 − 𝜎) + [𝐸𝐿𝑜𝑎𝑑 (𝑡)

− (𝐸𝑃𝑉 (𝑡) + 𝐸𝑊 𝑇 (𝑡) + 𝐸𝑀𝑜𝑡(𝑡))]
(10)

𝐸𝑏𝑎𝑡𝑡(𝑡) = 𝐸𝑏𝑎𝑡𝑡(𝑡 − 1) ⋅ (1 − 𝜎) + [𝐸𝑃𝑉 (𝑡)

+ 𝐸𝑊 𝑇 (𝑡) + 𝐸𝑀𝑜𝑡(𝑡) − 𝐸𝐿𝑜𝑎𝑑 (𝑡)]
(11)

In order to simulate a real behavior of the batteries, the delivered
energy cannot drop below the minimum State of Charge 𝑆𝑂𝐶𝑚𝑖𝑛, which
is equal to the 20% of the batteries capacity 𝐵𝐶 .

2.4. MILP Modeling

The Linear Programming (LP) is an optimization algorithm in which
a linear objective function has to be minimized or maximized with
respect to a defined time period and a temporal discretization through
time steps. When only some variables have to be integer, the problem is
called Mixed Integer Linear Programming (MILP) [45]. A MILP problem
consists of: (i) an objective function, (ii) decision variables and (iii)
constraints. The target of the MILP problem is to minimize an objec-
tive function choosing the best values of the decision variables that
respect the established constraints. A flow chart that shows the MILP
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optimization steps is reported in Fig. 8. Objective functions, decision
variables and constraints that constitute the problem are described in
Sections 2.4.1–2.4.3, respectively.

2.4.1. Objective function
The objective function of the MILP algorithm is the total Net Present

Cost (NPC) of the system, which is the sum of the total NPC related
to each element that constitutes a HRES. The total cost of an element
embedded in a HRES can be defined as the sum of the initial capital
cost 𝐶𝐼𝑁 , the operation and maintenance (O&C) cost 𝐶𝑂&𝑀 and the
replacement one 𝐶𝑅. If the fuel is consumed, the supposed quantity of
the fuel consumption in the lifetime of the generator 𝐹𝑐 and its cost
𝐶𝑓𝑢𝑒𝑙 must be included. In order to obtain the NPC, all the costs must
be actualized at the present stage of the project. The objective function
is expressed by Eq. (12).

𝑚𝑖𝑛
(

𝑁𝑃𝑉 𝐶𝑃𝑉 +𝑁𝑊 𝑇𝐶𝑊 𝑇 +𝑁𝐵𝑎𝑡𝑡𝐶𝐵𝑎𝑡𝑡 + 𝐶𝐷𝑖𝑒𝑠𝑒𝑙𝑁𝐷𝑖𝑒𝑠𝑒𝑙 + 𝐹𝑐𝐶𝑓𝑢𝑒𝑙
)

(12)

where 𝑁𝑃𝑉 , 𝑁𝑊 𝑇 and 𝑁𝐵𝑎𝑡𝑡 are the total number of PV panels, wind
urbines and batteries units, respectively. 𝑁𝐷𝑖𝑒𝑠𝑒𝑙 is the number of diesel
enerators that in this case has been set equal to 1 and does not

constitute a decision variable of this specific optimization problem.
Nevertheless, it has been included in the problem in order to improve
the flexibility of the algorithm when a different case study is used. 𝐶𝑃𝑉 ,
𝐶𝑊 𝑇 , 𝐶𝐵𝑎𝑡𝑡 and 𝐶𝐷𝑖𝑒𝑠𝑒𝑙 are the total NPCs of a single PV panel, wind
urbine, battery and diesel generator respectively. 𝐹𝑐 and 𝐶𝑓𝑢𝑒𝑙 are the

fuel consumption of the diesel generator and the fuel cost, respectively.

2.4.2. Decision variables
The decision variables determine the output of the objective func-

tion. The target of the MILP algorithm consists on minimizing the
objective function, thus to find the values of the decision variables for
reaching this target. In the analyzed case, the decision variables are the
following:

• 𝑁𝑃𝑉 : number of PV panels;
• 𝑁𝑊 𝑇 : number of wind turbines;
• 𝑁𝐵𝑎𝑡𝑡: number of batteries units;
• 𝐸𝐵𝑎𝑡𝑡(𝑡): energy delivered or absorbed by the battery per each time

interval;
• 𝐸𝐷𝑔(𝑡): energy delivered by the diesel generator per each time

interval.

.4.3. Constraints
The constraints are mathematically expressed in form of equalities

nd inequalities, thus limiting the values that can be attributed by the
lgorithm to the decision variables. They are related to technological,
conomic or geometrical limitations. In this case study, technologi-
al and geometrical constraints are involved. Eqs. (13)–(15) set the
echnological constraints, while Eqs. (16), (18) and (17) define the
eometrical ones. Eq. (13) expresses the balance between the energy
roduced by the HRES and the load demand. The produced energy has
o satisfy the load demand per each time interval. It is also assumed
hat the excess of the produced energy can be managed by the inverter
onnected to the PV modules and the pitch control system of the wind
urbines, thus reducing the power output by letting the generators
perate in off-design conditions according to the power curves of the
achines.

𝐿𝑜𝑎𝑑 (𝑡) ≤ 𝐸𝑃𝑉 (𝑡)𝑁𝑃𝑉 + 𝐸𝑊 𝑇 (𝑡)𝑁𝑊 𝑇 + 𝐸𝐷𝑔(𝑡) + 𝐸𝐵𝑎𝑡𝑡(𝑡) (13)

Eqs. (14) and (15) limit the energy that can be delivered or absorbed
by the battery storage per each time interval. Eq. (14) sets both lower
and upper limits of the energy delivered by the batteries per each time
interval, thus establishing that the energy delivered by the batteries
cannot be lower than the minimum State Of Charge (𝑆𝑂𝐶𝑚𝑖𝑛), which
corresponds to 20% of the battery capacity (𝐵𝐶 ). In addition, the
6

maximum energy delivered per each time interval cannot exceed the
Table 2
Parameters adopted to limit the ground areas of PV panels and wind turbines.

Parameter Value Unit of measure

𝑆𝑎 100 m2

𝑆𝑜 25 m2

𝐿 10 m
𝑙 10 m
𝑎 0.994 m
𝑏 1.652 m
𝛽 30 degrees
𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 46.819 degrees

SOC of the batteries, i.e. the effective amount of energy left in the
batteries after their operation in the previous time interval.

𝑆𝑂𝐶𝑚𝑖𝑛 ⋅ 𝐵𝐶 ⋅𝑁𝐵𝑎𝑡𝑡 ≤ 𝐸𝐵𝑎𝑡𝑡−𝑜𝑢𝑡(𝑡) ≤ 𝑆𝑂𝐶(𝑡 − 1) ⋅ 𝐵𝐶 ⋅𝑁𝐵𝑎𝑡𝑡 (14)

𝐸𝐵𝑎𝑡𝑡−𝑖𝑛(𝑡) ≤ 𝐵𝐶 ⋅𝑁𝐵𝑎𝑡𝑡 − 𝑆𝑂𝐶(𝑡) ⋅ 𝐵𝐶 ⋅𝑁𝐵𝑎𝑡𝑡 (15)

Eq. (16) limits the available ground area of the wind turbines in the
nstallation site: precisely, 𝑆𝑜 is the one occupied by a wind turbine. It
s worth noticing that the total area that can be occupied by the wind
urbines 𝑁𝑊 𝑇 ⋅ 𝑆𝑜 cannot exceed the available area Sa.

𝑊 𝑇 ≤
𝑆𝑎
𝑆𝑜

(16)

Eq. (17) limits the ground area that can be occupied by PV panels:
namely, 𝐿 and 𝑙 are the larger and the smaller sides of the available
ground area, respectively, 𝑎 is the smaller side of the PV module, 𝑐 is
he projection of the larger side 𝑏 of the panel on the ground and 𝑑 is
he distance between the rows of the PV panels. A clear description of
hese geometrical parameters is shown in Fig. 9.

𝑃𝑉 ≤ 𝐿 ⋅ 𝑙
𝑎 ⋅ (𝑐 + 𝑑)

(17)

Eq. (18) reports the calculation process used to obtain the con-
traints deriving by Eq. (17).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁𝑃𝑉 ≤ 𝑙
𝑎 ⋅𝑁𝑟𝑜𝑤𝑠

𝑁𝑟𝑜𝑤𝑠 =
𝐿
𝑐+𝑑

𝑐 = 𝑏 ⋅ 𝑐𝑜𝑠(𝛽)
𝑑 = 𝑘 ⋅ 𝑠𝑖𝑛(𝛽)
𝑘 = 1

𝑡𝑎𝑛(61◦−𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒)

(18)

here 𝛽 is the tilt angle of the PV panel, 𝑏 is the larger side of the PV
odule and 𝑘 is a coefficient used to calculate the distance between two
V panels rows, which depends on the latitude where they are installed.
able 2 lists the values of the parameters used to limit the ground areas
ccupied by the PV panels and the wind turbines.

.5. Economic analysis - NPC of the HRES

The MILP algorithm computes the optimal solution of the problem
inding the values of the optimization variables that minimize the
bjective function, which is the minimum NPC of the system. Generally,
he NPC of an investment allows the investors to choose the optimal
ption among different ones. The NPC is defined as the sum of the
resent value of all the costs minus the sum of the present value of
ll the benefits. Therefore, the NPC of a component considers its total
ost that is composed by the initial capital cost 𝐶𝐼𝑁 , the operation
nd maintenance (O&M) cost 𝐶𝑂&𝑀 , the replacement cost 𝐶𝑅 and,
ventually, the fuel cost 𝐶𝑓𝑢𝑒𝑙 taking into account the Time Value of
oney (TVM) through a discount factor 𝐷𝑓 . For sense of clarity, 𝐷𝑓 is

sed to calculate the present value of the cash flow during the project
ifetime and it is defined by Eq. (19).

𝑓 = 1 (19)

(1 + 𝑖)𝑛
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Fig. 8. Flow chart of the MILP optimization algorithm.
Fig. 9. Dimensions of the PV panels.
Referring to Eq. (19), 𝑖 is the real discount rate, which takes into
account the money inflation as defined by Eq. (20), and 𝑛 is the lifetime
of the project expressed in years.

𝑖 =
𝑖𝑛𝑜𝑚 − 𝑓
1 + 𝑓

(20)

Referring to Eq. (20), 𝑖𝑛𝑜𝑚 represents the nominal discount rate that
indicates the rate at which money can be borrowed, while 𝑓 is the
expected inflation rate. 𝐷𝑓 decreases over the years, thus stating that
a future cash flow is less worth than a present one. Considering an
expected inflation rate of about 2%, 𝐷𝑓 has been considered equal to
6%.

3. Results and comments

The goal of the work is to demonstrate that the choice of the dataset
used to run the simulation has a crucial role on the results: therefore,
all the outcomes of the calculations require a correct evaluation to
avoid misunderstandings. In particular, simulations aim to show how
the optimal solution varies depending on the assumptions made on the
renewable energy sources profiles. The MILP optimization algorithm
was used taking into account three different cases related to the HRES:

• Case 𝟏: The simulation was run considering a time span of 24
hours. In this case, it is possible to analyze how the configuration
7

of the HRES changes depending on the fluctuations of the power
absorbed by the load and the power produced by the renewable
sources as well. This case is important for analyzing how the
variability of the dataset can affect the optimal solution. The
reduction of the Greenhouse gases (GHGs) emissions derived by
feeding the load with the HRES instead of only a diesel generator
is also shown.

• Case 𝟐: The simulation was run considering a time span of 1
month. In this case, the output of the analysis is a unique con-
figuration that meets the constraints per each hour of the month,
thus satisfying the load requirements. Furthermore, it is the most
robust solution, but also the most expensive. Indeed, the system
will be oversized and the excess of the produced energy will be
managed by the PV inverter and the pitch control system of the
wind turbines that can shift the operating point of PV panels and
wind turbines, respectively, to off-design conditions accordingly
to the required power output regulation. Also in this case, a
reduction of GHGs emissions is presented.

• Case 𝟑: The simulation was run considering a time span of 24
hours, varying the constraint of the load requirements from 100%
of the actual value to 50%, with steps of 10%. Indeed, it can be
supposed that it is not always necessary to satisfy the total hourly
load described by the load profile curves, applying a demand
side management strategy. In these cases, a percentage of the
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Table 3
Economic parameters used to run the simulation [44,48–51].

PV panels 𝐶𝐼𝑁 1,400 e/kW
𝐶𝑂&𝑀 0.081 e /kW (daily)

Wind turbines 𝐶𝐼𝑁 2,000 e /kW
𝐶𝑂&𝑀 0.095 e/kW (daily)

Batteries
𝐶𝐼𝑁 1,223 e/kWh
𝐶𝑂&𝑀 0.1 e/kWh (daily)
𝐶𝑅 612 e/kWh

Diesel generator
𝐶𝐼𝑁 550 e /kW
𝐶𝑂&𝑀 438 e/year
𝐶𝑓𝑢𝑒𝑙 2 e/l

load can be sometimes sacrificed since it is not essential. For
instance, loads like a cold storage can hold some hours without
the electrical supply. This case aims at demonstrating that a
reduced percentage of the load requirements lowers the depen-
dency on the renewable energy sources profiles, thus reducing
the variability of the total NPC between the most expensive and
the cheapest solutions. As a result, the algorithm helps engineers
to reduce the total cost of the system, adopting a configuration
that is not oversized over the entire time period. Furthermore,
a sensitivity analysis has been performed in order to assess the
effects of fuel and battery prices variations. Simulations have been
run considering a fuel price variation from 1.4 e∕𝑙 to 3.8 e∕𝑙,
with steps of 0.2 e∕𝑙, and a decreasing battery price with steps
of 5% until the 50% of its actual cost per kWh is reached. This
wide fuel price variation has been chosen to better point out
how the fuel price variation affects the HRES optimal sizing. For
sense of clarity, diesel prices can vary from 1.4 ∕𝑙 in developing
countries to 3 ∕𝑙 in remote areas characterized by a complicate
fuel distribution system [46] and [47].

Per each case, an economic analysis based on the NPC has been carried
out. The economic parameters used in the simulation are described in
Table 3.

3.1. Case 1 and case 2

Results of the first two cases are presented in Table 4. The MILP
algorithm computes the optimal number of PV panels, wind turbines
and battery units that minimizes the total NPC of the system per
each day related to the considered time interval. The algorithm also
computes the value of the energy delivered or absorbed by the batteries,
thus optimizing the energy produced by the generators and minimizing
the effect of the fluctuating renewable energy sources.

Table 4 lists the results obtained in Cases 1 and 2, showing that
the optimal size of the system varies over the considered days and
highlighting a noticeable difference between the solution characterized
by the highest and the lowest NPC.

Results also show that the variability of the power absorbed by
the load and the fluctuating nature of both sun radiation and wind
speed strongly affects the output of the simulation. Moreover, it can
be noticed how the results of the simulation change according to the
considered time span. When considering a time span of 24 hours, the
algorithm sizes the system in order to optimize the energy produced by
renewable energy sources, reducing the fuel consumption of the diesel
generator and considering also the energy stored in the battery storage
during the night hours when the sun radiation cannot contribute to
the energy supply. As a consequence, the battery storage is completely
discharged at the end of the day, contributing to a lower sizing and,
eventually, to the impossibility of meeting the power demand if the
first hours of the following day are characterized by low values of
wind speeds. The simulation over the time span of the entire month
(Case 2), as shown in the last line of Table 4, considers the worst
8

scenario in which there is a lack of both solar and wind production
in the different days: therefore, the result presents a bigger capacity
of the battery storage. Figs. 10 and 11 show the simulation results
considering the time period of the 7th and the 17th of June 2018,
respectively. These two days were selected in order to highlight the
behavior of the system when dealing with a different load and with
variable profiles of the sun radiation and the wind speed. It is worth
noticing that the negative values in the battery power profile indicate
the periods of the day during which the battery is charged, while the
positive values refer to the supply of power from the battery, namely
the discharge phase. In the first case, the optimal solution computed
by the algorithm does not include the wind turbines due to the lack of
the wind source. The algorithm computes the optimal solution relying
significantly on the contribution of the diesel generator during the daily
hours characterized by a lack of the sun source. In the second case,
the optimal solution computed by the optimization algorithm includes
the exploitation of the wind source and a minimum contribution of the
diesel generator is required. In this case, the HRES is able to satisfy
the load requirements relying almost entirely on renewable energy
generators and batteries. In both cases, it can be noticed how the
PV production and the batteries operations are complementary. The
system aims to charge the batteries with the excess of PV production
to use them when renewable resources cannot be exploited. For sense
of clarity, it is worth noticing that the trend of the energy supplied
by the PV system does not correspond exactly to the one reported in
Fig. 2 since a control system is implemented to modulate the power de-
livered through the solar inverter. Similarly, the wind turbine includes
a pitch control functionality to modulate the generated power when
an excessive power production is achieved. Fig. 12 shows the trend
of the load profile, the energy produced by the HRES and the SOC of
the batteries in the entire month. It is worth noticing that the diesel
generator operates when the energy cannot be supplied by both PV
panels and wind turbines, thus operating at its rated power to optimize
the fuel consumption. The diesel generator does not operate when solar
and wind sources are abundant. In this case, the entire energy needs
are supplied by PV panels, the wind turbine and the battery storage,
either supplying energy when needed or absorbing its overproduction.
It can be also appreciated how a change of the simulation time span
from 24 hours to the entire month affects the simulation results related
to each single day computed in a scenario of 24 hours. For instance,
considering the 7th of June, the optimization algorithm has to compute
the charge/discharge operation of the battery pack and the power
delivered by the diesel generator in a day taking into account the
previous operating conditions and the state of the HRES. Therefore,
results shown in Figs. 10 and 12 differ one to each other.

Table 5 shows the GHGs emissions in terms of CO2 and NOx due to
the electrical energy provided by the diesel generator. It also provides
a comparison between the total GHGs emissions if the load would
be entirely satisfied by the diesel generator. It is worth noticing the
remarkable reduction due to the introduction of the renewable energy
technologies in the energy system.

3.2. Case 3

Table 6 refers to Case 3 and provides the values of the minimum and
the maximum NPC, as well as the difference between them whether a
hourly energy deficit is accepted. It is worth noticing that, reducing
the percentage of the total hourly load, the difference between the
maximum and the minimum NPC decreases down to 57%.

Table 7 lists the results obtained in a time span of 24 hours,
considering a decreasing battery price with steps of 5% until a drop of
50% is achieved, corresponding to a battery price of 581 e/kWh. Table 7
highlights how a reduction of the battery price affects the number of
PV panels, wind turbines, battery units and the NPCs of both HRES
and diesel generator. It can be noticed how a reduction of the battery
price leads to an increase of the battery units until their price drops to

50%. Precisely, the most expensive solution occurs for the simulation
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Fig. 10. Simulation results of the 7th June 2018.

Fig. 11. Simulation results of the 17th June 2018.

Fig. 12. Load profile and contribution of the HRES over a month.
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Table 4
Comparison between different configurations of the HRES. Case 1 (results of each single day) and Case 2 (results of the whole month).

Day NPV NWT Battery [kWh] NPCTOT [e] NPCPV [e] NPCWT [e] NPCBat [e] NPCMot [e]

1st June 103 0 12 169,720 44,523 0 35,573 89,624
2nd June 119 0 20 152,967 51,439 0 59,288 42,240
3rd June 138 0 16 167,448 59,652 0 47,430 60,366
4th June 169 0 21 151,011 73,052 0 62,252 15,706
5th June 146 0 21 148,444 63,110 0 62,252 23,082
6th June 89 0 17 103,946 38,471 0 50,395 15,080
7th June 63 0 8 122,607 27,232 0 23,715 71,659
8th June 93 0 12 147,277 40,200 0 35,573 71,504
9th June 182 0 17 182,475 78,672 0 50,395 53,409
10th June 74 0 8 98,311 31,987 0 23,15 42,608
11th June 1 2 15 175,084 432 49,397 44,466 80,788
12th June 72 0 8 125,813 31,123 0 23,715 70,975
13th June 50 1 7 92,858 21,613 24,699 20,751 25,796
14th June 105 0 17 176,568 45,387 0 50,395 80,786
15th June 75 1 4 94,895 32,420 24,699 11,858 25,919
16th June 189 1 13 160,185 81,697 24,699 38,537 15,251
17th June 126 1 14 137,282 54,465 24,699 41,502 16,617
18th June 73 1 5 86,342 31,555 24,699 14,822 15,266
19th June 29 2 6 94,260 12,536 49,397 17,786 14,541
20th June 60 0 22 150,473 25,936 0 65,217 59,321
21st June 77 0 24 120,933 33,284 0 71,145 16,504
22nd June 48 1 6 97,159 20,749 24,699 17,786 33,926
23rd June 57 0 16 115,275 24,639 0 47,430 43,206
24th June 74 0 18 129,388 31,987 0 53,359 44,041
25th June 46 2 18 130,500 19,884 49,397 53,359 7,860
26th June 49 2 4 115,954 21,181 49,397 11,858 33,518
27th June 35 1 0 47,688 15,129 24,699 0 7,860
28th June 26 1 4 82,272 11,239 24,699 11,858 34,477
29th June 27 2 3 84,371 11,671 49,397 8,893 14,409
30th June 106 2 23 171,258 45,820 49,397 68,181 7,860

Month 110 1 10 171,473 47,549 24,699 29,644 69,851
Table 5
GHGs emissions savings.

Day El. Energy Delivered [kWh] CO2 [kg] NOx [kg] CO2 diesel only [kg] NOx diesel only [kg] CO2 savings % NOx savings %

1st June 31.3 71 0.38 33 1.74 79 79
2nd June 12.9 32.2 0.17 330 1.72 90 90
3rd June 19.8 48 0.25 332 1.73 86 85
4th June 2.8 8.3 0.04 307 1.59 97 97
5th June 5.4 16.4 0.09 296 1.53 94 94
6th June 2.5 8.5 0.04 284 1.48 97 97
7th June 24.5 55.2 0.29 297 1.53 81 81
8th June 24.4 55.2 0.29 293 1.52 81 81
9th June 17.5 39.4 0.21 324 1.68 88 88
10th June 13.1 32.1 0.17 369 1.91 91 91
11th June 28 63.1 0.34 301 1.56 79 79
12th June 24.1 55.4 0.29 319 1.65 83 82
13th June 6.8 15.8 0.08 310 1.61 95 95
14th June 28 63.1 0.34 294 1.53 79 78
15th June 6.9 15.8 0.08 336 1.75 95 95
16th June 2.6 8.4 0.04 340 1.77 98 98
17th June 3.3 8 0.04 364 1.89 98 98
18th June 2.6 8.4 0.04 364 1.90 98 98
19th June 2.2 8.6 0.04 337 1.76 97 98
20th June 19.2 48.3 0.25 345 1.80 86 86
21st June 3.2 8 0.04 343 1.79 98 98
22nd June 9.8 24.1 0.13 367 1.91 93 98
23rd June 13.4 31.9 0.17 364 1.90 91 91
24th June 13.8 31.6 0.17 398 2.08 92 92
25th June 0 0 0 386 2.02 100 100
26th June 9.6 24.2 0.13 340 1.77 93 93
27th June 0 0 0 356 1.86 100 100
28th June 10.1 23.9 0.13 350 1.83 93 93
29th June 2.1 8.6 0.04 376 1.96 98 98
30th June 0 0 0 385 2.01 100 100

Month 678 1,710 25 10,138 52.8 83 52
s
c

of the 16th of June, while the cheapest is obtained for the 9th of
June. The need to exploit the sun source, coupled with a consistent
reduction of the battery price, leads to an increase of the PV units so
that the battery cost becomes competitive with respect to the PV one.
10

Considering the diesel generator, its total NPC slightly increases when u
the battery price decreases of 10%, which corresponds to 1040 e/kWh,
ince the generator is preferred than the PV panels: for this reason, the
ost of the diesel generator decreases until to 7860 e since it is only

sed as a backup.
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Table 6
Minimum and maximum NPCs from different configurations with demand management.
% of load demand to satisfy Min NPC [e] Max NPC [e] Max - Min NPC [e] % of the decrease

100% 47,688 182,475 134,787 −
90% 44,662 165,088 120,426 11 %
80% 42,501 147,645 105,144 22 %
70% 40,339 130,639 90,300 33 %
60% 38,178 113,005 74,827 44 %
50% 37,252 95,863 58,611 57 %
Table 7
Results obtained considering a decreasing battery price.
Battery Price PV panels Wind turbines Battery units NPC Generator [e] NPC HRES [e]
[e/kWh] Max ∣ Min Max ∣ Min Max ∣ Min Max ∣ Min Max ∣ Min

1,223 182 ∣ 35 0 ∣ 1 17 ∣ 0 53, 409 ∣ 7, 860 182, 475 ∣ 47, 688
1,162 182 ∣ 35 0 ∣ 1 17 ∣ 0 53, 409 ∣ 7, 860 179, 962 ∣ 47, 688
1,101 151 ∣ 35 0 ∣ 1 22 ∣ 0 53, 432 ∣ 7, 860 177, 415 ∣ 47, 688
1,040 145 ∣ 29 0 ∣ 1 23 ∣ 1 53, 389 ∣ 7, 860 174, 045 ∣ 47, 615
978 145 ∣ 29 0 ∣ 1 23 ∣ 1 53, 389 ∣ 7, 860 170, 589 ∣ 47, 465
917 141 ∣ 29 0 ∣ 1 24 ∣ 1 52, 862 ∣ 7, 860 167, 155 ∣ 47, 317
856 142 ∣ 29 0 ∣ 1 41 ∣ 1 16, 800 ∣ 7, 860 163, 329 ∣ 47, 169
755 144 ∣ 29 0 ∣ 1 45 ∣ 1 7, 860 ∣ 7, 860 142, 457 ∣ 46, 924
697 144 ∣ 25 0 ∣ 1 45 ∣ 2 7, 860 ∣ 7, 860 146, 130 ∣ 46, 744
639 144 ∣ 25 0 ∣ 1 45 ∣ 2 7, 860 ∣ 7, 860 139, 804 ∣ 46, 463
581 205 ∣ 25 0 ∣ 1 29 ∣ 2 7, 860 ∣ 7, 860 137, 314 ∣ 46, 182
Table 8
Simulation results with a decreasing fuel price.
Fuel Price PV panels Wind turbines Battery units NPC HRES [e] Day of June
[e/l] Max ∣ Min Max ∣ Min Max ∣ Min Max ∣ Min Max ∣ Min

1.4 169 ∣ 35 0 ∣ 1 6 ∣ 0 167, 261 ∣ 47, 688 9th ∣ 27th
1.6 182 ∣ 35 0 ∣ 1 17 ∣ 0 173, 365 ∣ 47, 688 9th ∣ 27th
1.8 182 ∣ 35 0 ∣ 1 17 ∣ 0 177, 920 ∣ 47, 688 9th ∣ 27th
2.0 182 ∣ 35 0 ∣ 1 17 ∣ 0 182, 475 ∣ 47, 688 9th ∣ 27th
2.2 182 ∣ 35 0 ∣ 1 17 ∣ 0 187, 030 ∣ 47, 688 9th ∣ 27th
2.4 182 ∣ 35 0 ∣ 1 17 ∣ 0 191, 585 ∣ 47, 688 9th ∣ 27th
2.6 105 ∣ 35 0 ∣ 1 17 ∣ 0 198, 445 ∣ 47, 688 14th ∣ 27th
2.8 105 ∣ 35 0 ∣ 1 17 ∣ 0 205, 738 ∣ 47, 688 14th ∣ 27th
3.0 105 ∣ 35 0 ∣ 1 52 ∣ 0 207, 396 ∣ 47, 688 14th ∣ 27th
3.2 105 ∣ 35 0 ∣ 1 52 ∣ 0 207, 396 ∣ 47, 688 14th ∣ 27th
3.4 105 ∣ 35 0 ∣ 1 52 ∣ 0 207, 396 ∣ 47, 688 14th ∣ 27th
3.6 105 ∣ 35 0 ∣ 1 52 ∣ 0 207, 396 ∣ 47, 688 14th ∣ 27th
3.8 205 ∣ 35 0 ∣ 1 52 ∣ 0 207, 396 ∣ 47, 688 14th ∣ 27th
Table 8 shows the results obtained after a sensitivity analysis per-
ormed on the diesel price, considering the most expensive and the
heapest system configuration. An increasing diesel price with steps
f 0.2 e∕𝑙 has been considered, starting from a value of 1.4 e∕𝑙 to

a value of 3.8e∕𝑙. When dealing with the most expensive solution, an
increase of the diesel price from 1.4 to 1.6 e∕𝑙 leads to a consistent
increase of the number of PV panels and battery units. Then, their
number remains stable until a value of 2.4 e∕𝑙 is reached. This occurs
in the day characterized by the most expensive configuration changes
from the 9th to the 14th of June during which the HRES configuration
is the same also with a diesel price of 2.8 e∕𝑙. This is due to the fact
that, considering a diesel price that varies from 1.6 e∕𝑙 to 2.8 e∕𝑙,
the increase does not affect the competitiveness of the diesel generator
with respect to the other generators. This is also demonstrated by the
fact that the total NPC of the system grows progressively. Moving from
2.8 e∕𝑙 to 3 e∕𝑙, the algorithm favors a solution constituted by a higher
umber of battery units and the diesel generator, where the former does
ot contribute to the load energy needs. This is demonstrated by the
act that the total NPC of the system remains constant.

. Conclusions

A MILP algorithm has been developed with the aim of analyzing
ow the choice of the reference dataset for designing a HRES can
trongly affect the optimal configuration due to the strong variability
f the renewable energy sources. The algorithm was used considering
11
a case study of a mountain hut located in South-Tyrol (Italy) at an
altitude of 2200 m a.s.l. where the national power grid is not present.
The applied methodology considers a hybrid system composed by PV
panels, wind turbines, a diesel generator and lead–acid batteries as
storage solution.

The algorithm computes the optimal number of PV panels, wind
turbines, battery units and the energy provided by the diesel generator,
constituting the optimization variables of the problem, with the aim
of minimizing the total Net Present Cost (NPC) of the system over its
entire lifetime. As input, a dataset based on a measurement campaign
performed in the month of June 2018 related to the wind speed on
site and the power consumption of the hut was used. These data
were collected each minute per each day and their hourly average
values were computed and used. The data related to the sun radiation
were downloaded by the PVGIS database. Two sizing approaches were
evaluated: in one case, the sizing of the components is based on the
dataset of single days operation; alternatively, the sizing is based on
the whole dataset covering one month operation. Based on these two
approaches, the algorithm simulates the behavior of the optimal system
over one month.

Results showed a strong variability related to the optimal sizing of
power generators and batteries in the HRES, which strongly depends on
the variability of the renewable sources as well as on the load profile.
This demonstrates that the proper selection and analysis of the dataset
for sizing a HRES is fundamental to obtain adequate performance.
Considering only a daily load profile and a daily pattern of both sun
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and wind sources, the HRES sizing could not meet the needs of the
load in all the days if a proper representative day of the entire month
is not defined. However, a lower capital cost would be required in most
of the cases. On the other hand, its sizing leads to an oversizing of the
components when dealing with the whole dataset. Therefore, a demand
management could help to reduce the size of the components and,
at the same time, grate the energy supply when the most demanding
conditions occur. Results showed that: 1. the optimal sizing of a HRES
strongly depends on the renewable sources and their variability, 2.
the storage systems, coupled with conventional generators, are still
necessary to avoid the oversizing of the entire system, as well as of
the batteries bank, 3. the modulation of PV power, wind power and
an eventual demand side management strategy is crucial to avoid the
oversizing due to the variable percentage of the load to be satisfied
each hour of the day, which decreases the difference between the
maximum and the minimum costs of the HRES. Results also demon-
strate a significant reduction of the GHGs emissions due to the use
of renewable energy technologies. Furthermore, a sensitivity analysis
has been performed on both the fuel and battery costs, showing how
these parameters can influence the optimal sizing of the system. In
particular, considering a possible future scenario characterized by a
significant battery price reduction, HRESs would significantly reduce
their dependency on fossil-fuel conventional generators.

This algorithm constitutes a tool capable of providing a detailed
description of different possible scenarios, thus helping engineers to
design the system properly. Further developments of this investigation
may include the use of a PHES equipped with Pumps-as-Turbines (PaTs)
instead of conventional hydraulic turbines or conventional batteries
storage systems. Indeed, the lower cost of PaTs compared to conven-
tional hydraulic turbines and battery storage systems can reduce the
total cost of an HRES, thus pushing further their future deployment.
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