COURSE DESCRIPTION – ACADEMIC YEAR 2019/2020

Course title	Advanced Topics in Machine Learning
Course code	73021
Scientific sector	ING-INF/05
Degree	Master in Computational Data Science (LM-18)
Semester	1
Year	2
Credits	6
Modular	No

Total lecturing hours	40
Total lab hours	20
Attendance	It is highly recommended to attend the Lab sessions.
Prerequisites	
Course page	https://ole.unibz.it/

Specific educational objectives

Lecturer	Tammam TILLO
Contact	POS 1.17, ttillo@unibz.it, +39 0471 016026
Scientific sector of lecturer	ING-INF/05
Teaching language	English
Office hours	 Tuesday 15:00-17:00, faculty of computer science, Piazza Domenicani 3, Office 1.17. It is recommended to make an appointment beforehand by email.
Lecturing Assistant (if any)	
Contact LA	
Office hours LA	
List of topics	 Computer vision Image classification Convolutional Neural Networks (CNN) Training Neural Networks Understanding and visualizing Convolutional Neural Networks Deep Reinforcement Learning
Teaching format	This course will be delivered through a combination of formal lectures and lab sessions.
Learning outcomes	Knowledge and understanding:D1.1 - Knowledge of the key concepts and technologies of

data science disciplines

Fakultät für Informatik **UNIDZ** Facoltà di Scienze e Tecnologie informatiche Faculty of Computer Science

Assessment	 Lab exercises Final exam (written) The written exam will consist of a set of verification questions, transfer of knowledge questions and exercises.
Assessment language	English
Assessment Typology	Monocratic
Evaluation criteria and criteria for awarding marks	 Marks are distributed as follows : 30% for lab exercises 70% for final exam The aim of the written exam is to assess to which degree students have achieved the following learning outcomes: 1) knowledge and understanding, 2) applying knowledge and understanding, 3) making judgment. The laboratory exercises are designed to assess students' ability to design solutions for practical problems.

Required readings	
	Subject Librarian: David Gebhardi, David.Gebhardi@unibz.it
Supplementary readings	 Suggested book : Title : Pattern Recognition and Machine Learning ; Author : Chris Bishop;

	• Title : Deep Learning ; Authors : Ian Goodfellow, Yoshua Bengio and Aaron Courville ;
Software used	The lab experiments will be performed using MATLAB or PYTHON or other software tools.