SYLLABUS COURSE DESCRI PTI ON

| COURSE TI TLE | Mathematical Methods for Experimental Sciences | | |
| :--- | :--- | :--- | :--- | :--- |
| COURSE CODE | 75005 | | |
| SCI ENTI FI C SECTOR | FIS/01 | | |
| DEGREE | Bachelor in Computer Science and Engineering | | |
| SEMESTER | 1st Semester | | |
| YEAR | 2nd | | |
| CREDITS | 8 | | |

TOTAL LECTURI NG	48
HOURS 24 TOTAL LAB HOURS 24 PREREQUI SITES One-variable calculus (differentiation, integration) COURSE PAGE https://ole.unibz.it/	

| SPECI FIC |
| :--- | :--- |
| EDUCATI ONAL |
| OBJ ECTI VES |\quad| • Type of course: "di base" for L-31 and L-08 |
| :--- |
| |
| |
| |
| |
| ecientific charea: "formazione matematica-fisica" for L-31 and "fisica |
| Learning how to tackle problems that require the |
| maximization/minimization of a figure-of-merit function or the solution of |
| differential equations. |
| Learning the basics of Fourier transform analysis. |

LECTURER	Leonardo Ricci
SCI ENTI FIC SECTOR OF THE LECTURER	FIS/01- Fisica Sperimentale
TEACHI NG LANGUAGE	English
OFFICE HOURS	TBA
TEACHING ASSISTANT	Same as lecturer
OFFICE HOURS	Same as lecturer
LIST OF TOPI CS COVERED	- Integration - Differential equations - Functions of multiple variables - Differential and Taylor formula (for multiple variables) - Maxima and Minima - Function spaces - Series of functions - Systems of differential equations
TEACHI NG FORMAT	Frontal lectures; exercises

LEARNING

OUTCOMES \quad\begin{tabular}{c}
Knowledge and understanding

have a solid knowledge of mathematics tools that are in

support of computer science

Applying knowledge and understanding

be able to use the tools of mathematics to solve problems

Making judgments
be able to work autonomously according to the own level of
knowledge

Communication skills
be able to structure and write scientific documentation
Learnill
have developed learning capabilities to pursue further studies
with a high degree of autonomy
be able to learn the innovative features of state-of-the-art
technologies and information systems

\end{tabular}

ASSESSMENT	Written final exam only [100\% of mark]. The exam consists of 4-6 exercises: at least one exercise on differential calculus (see above the first 5 points of the syllabus), one exercise on differential equations and/or systems of differential equations, and one exercise on multiple integration.
ASSESSMMENT	English
LANGGUAGE	Relevant for assessment are: correctness of answers; EVALUATI ON
CRITERIA AND	
CRI TERIA FOR	
AWARDING MARKS	

REQUI RED READINGS	Textbook: - R. A. Adams and C. Essex, "Calculus - a complete course", Pearson Canada Other reading suggestions: excerpts from (for example) - T. M. Apostol, "Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability", Wiley - F. Conti, P. Acquistapace, A. Savojni, "Analisi matematica - Teoria e applicazioni", McGraw-Hill - W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press; available online at www.nr.com
SUPPLEMENTARY READINGS	none
SOFTWARE USED	Occasionally, gnuplot on Linux

