

1/3

SYLLABUS

COURSE DESCRIPTION

COURSE TITLE Formal Languages and Compilers

COURSE CODE 75016

SCIENTIFIC SECTOR INF/01

DEGREE Bachelor in Computer Science and Engineering

SEMESTER 1st Semester

YEAR 3rd year

CREDITS 8

TOTAL LECTURING
HOURS 48

TOTAL LAB HOURS 24

PREREQUISITES Knowledge of either Java or C programming languages

COURSE PAGE https://ole.unibz.it/ and
http://www.inf.unibz.it/~artale/Compiler/compiler.htm

SPECIFIC
EDUCATIONAL
OBJECTIVES

• Type of course: “caratterizzante” for L-31 and “affine o integrative”
for L-08

• Scientific area: “discipline informatiche” for L-31 and “formazione
interdisciplinare” for L-8

The main objective is to introduce the fundamental notions about formal
languages (Chomsky classification of Languages, Regular Languages,
Automata, Context Free Grammars) and understand the mechanisms
governing the analysis and synthesis of programming languages. Students
will learn the most important techniques for the representation and
generation of Languages (in particular, regular and context-free
languages).

Those techniques will be applied to the construction of a compiler for a
programming language. In particular, during this course the student will
learn how to build the different parts of a Compiler with a particular
emphasis on Lexical Analysers, Parsers and a basic form of code
generation.

LECTURER Alessandro Artale, office POS 2.03 Faculty of CS, POS Building, Piazza

Domenicani 3, artale@inf.unibz.it, +39 0471 016150

Web Page: http://www.inf.unibz.it/~artale
Email: artale@inf.unibz.it

https://ole.unibz.it/
http://www.inf.unibz.it/%7Eartale/Compiler/compiler.htm
http://www.inf.unibz.it/%7Eartale
mailto:artale@inf.unibz.it

2/3

SCIENTIFIC SECTOR
OF THE LECTURER

INF/01

TEACHING
LANGUAGE

English

OFFICE HOURS During the lecture time span, Office 2.03.
To fix an appointment email at artale@inf.unibz.it

TEACHING
ASSISTANT

Same as lecturer

OFFICE HOURS Same as lecturer

LIST OF TOPICS
COVERED

• Formal languages and grammars
• Regular languages (automata, regular expressions, regular grammars)
• Context free languages (stack machines)
• Compiler organization
• Lexical analysis
• Top-down and bottom-up parsing
• Symbol tables, semantic checking
• Principles of Code generation

TEACHING FORMAT Frontal lectures, labs with (programming) exercises, team projects.

LEARNING
OUTCOMES

Knowledge and understanding
• knowing the concepts of formal languages, the techniques of

compilation and various programming paradigms.
Applying knowledge and understanding

• being able to develop and construct translators and compilers.
Ability to make judgments

• being able to work autonomously according to the own level of
knowledge;

• being able to take the responsibility for software development
projects.

Communication skills
• being able to work in teams to implement software systems;
• being able to use modern communication systems.

Ability to learn
• have developed learning capabilities to pursue further studies with

a high degree of autonomy
• have acquired learning capabilities that enable them to carry out

project activities in companies, public institutions or in distributed
development communities

ASSESSMENT Project conducted in team and a written exam (with an optional mid-term

written exam).

In the project part of the exam we will assess the learning outcomes
related to the application of the acquired knowledge, the ability to make
judgments and the communication skills. In fact, the goal of the project is
to design a compiler for a small programming language. The project part
must be positively evaluated before the written exam.

mailto:artale@inf.unibz.it

3/3

In the written exam (including the optional mid-term exam) there will be
verification questions, transfer of knowledge questions and exercises. The
learning outcome related to knowledge and understanding, applying
knowledge and understanding and those related to the student ability to
learn and the acquired learning skills will be assessed by the written exam.

ASSESSMENT
LANGUAGE English

EVALUATION
CRITERIA AND
CRITERIA FOR
AWARDING MARKS

• Project: Compiler Development (30%)
• Mid-term Written Exam (35%)

o Note: the Mid-term is optional and covers the Formal Language
part of the final exam.

• Final Written Exam
o 35% covering a reduced program for students who passed the

Mid-term exam, or
o 70% covering the full program in case of failure of the Mid-term.

Written exam questions will be evaluated in term of correctness and clarity.

Project is evaluated in term of quality of the solution: complexity and
novelty of the programming language to be compiled, data structures used
in implementing the symbol table, depth of the semantic analysis carried
on.

Note: In case of a positive mark both the mid-term exam and the project
will count for 3 regular consecutive exam sessions.

REQUIRED
READINGS

Compilers: Principles, Techniques, and Tools (2nd edition). Alfred V. Aho,
Monica S. Lam, Ravi Sethi and Jeff Ullman. Publisher: Addison Wesley,
2007.

Introduction to Automata Theory, Languages, and Computation (3rd

edition). J.E. Hopcroft, R. Motwani, J.D. Ullman. Addison Wesley, 2007.

SUPPLEMENTARY
READINGS

Compiler Construction: Principles and Practice, Kenneth C. Louden.
Publisher: Brooks Cole, 1997.

Advanced Compiler Design and Implementation, Steven Muchnick.
Publisher: Morgan Kaufmann, 1997.

Programming Language Processors in Java: Compilers and Interpreters,
David Watt and Deryck Brown. Publisher: Prentice Hall, 2000.

SOFTWARE USED C or Java, YACC, LEX

