

SYLLABUS COURSE DESCRIPTION

COURSE TITLE	Mathematical Methods for Experimental Sciences
COURSE CODE	75005
SCIENTIFIC SECTOR	FIS/01
DEGREE	Bachelor in Computer Science and Engineering
SEMESTER	1st Semester
YEAR	2nd
CREDITS	8

TOTAL LECTURING HOURS	48
TOTAL LAB HOURS	24
PREREQUISITES	One-variable calculus (differentiation, integration)
COURSE PAGE	None. Students should refer to their notes taken during lectures and exercise classes, and consult the suggested textbook and readings

SPECIFIC EDUCATIONAL OBJECTIVES	 Type of course: "di base" for L-31 and L-08 Scientific area: "formazione matematica-fisica" for L-31 and "fisica e chimica" for L-8
	Learning how to tackle problems that require the maximization/minimization of a figure-of-merit function or the solution of differential equations. Learning the basics of Fourier transform analysis.

LECTURER	Leonardo Ricci, office POS 1.04, Faculty of CS, POS Building, piazza Domenicani 3, leonardo.ricci@unibz.it
SCIENTIFIC SECTOR OF THE LECTURER	FIS/01
TEACHING LANGUAGE	English
OFFICE HOURS	During the lecture time span, Tuesday, 12.30-13:30, <u>Faculty of CS, POS</u> <u>Building, piazza Domenicani 3</u> , office 1.04
TEACHING ASSISTANT	Same as lecturer

Fakultät für Informatik

Facoltà di Scienze e Tecnologie informatiche

Faculty of Computer Science

OFFICE HOURS	Same as lecturer
LIST OF TOPICS COVERED	 Functions of multiple variables: definition and graphs; limits; continuity. Differential and Taylor formula (for multiple variables): partial differentiation; differentiability and linearization; gradient, differential and directional derivative. Maxima and Minima: extreme values and saddle points; Hessian matrix. Function spaces: metric spaces; least-squares approximation of a function by means of polynomials. Series of functions: periodic functions and Fourier series. Differential equations: first and second order linear differential equations; ordinary differential equations; partial differential equations: Systems of differential equations: solution of special cases. Integration: multiple integration via iterated integrals; change of variables and Jacobian determinant
TEACHING FORMAT	Frontal lectures, exercises

LEARNING OUTCOMES	 Knowledge and understanding have a solid knowledge of mathematics that is in support of computer science
	Applying knowledge and understanding
	 be able to use the tools of mathematics to solve problems
	Ability to make judgments
	 be able to work autonomously according to the own level of knowledge
	Communication skills
	 be able to structure and write scientific documentation
	Ability to learn
	 have developed learning capabilities to pursue further studies with a high degree of autonomy be able to learn the innovative features of state-of-the-art technologies and information systems

ASSESSMENT	Written final exam only [100 % of mark].
ASSESSMENT LANGUAGE	English
EVALUATION CRITERIA AND CRITERIA FOR AWARDING MARKS	The exam consists of 4-6 exercise: at least one exercise on differential calculus (see above the first 5 points of the syllabus), one exercise on differential equations and/or systems of differential equations, and one exercise on multiple integration

REQUIRED READINGS	Textbook: R. A. Adams and C. Essex, "Calculus – a complete course" (7 th edition), Pearson Canada
SUPPLEMENTARY	Other reading suggestions: excerpts from (for example)

READINGS	 T. M. Apostol, "Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability", Wiley F. Conti, P. Acquistapace, A. Savojni, "Analisi matematica – Teoria e applicazioni", McGraw-Hill W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, "Numerical Recipes in C: The Art of Scientific Computing" (2nd edition, 1992), Cambridge University Press; available online at <i>www.nr.com</i>
SOFTWARE USED	Occasionally, <i>gnuplot</i> on Linux