COURSE DESCRIPTION - ACADEMIC YEAR 2024/25

Course title	Geometry
Course code	保
Scientific sector	MAT/05
Degree	Industrial and Mechanical Engineering L-9
Semester	1^{0}
Year	$2024-2025$
Academic year	8
Credits	NO
Modular	52
Total lecturing hours 21 Total lab hours rocommended Attal exercise hours Precalculus Prerequisites In OLE Course page The course belongs to the area of core fundamental sciences, specifically to the sector of mathematics, informatics and statistics. It is a mandatory course. It aims at providing students with general scientific contents and method characteristic of (1) Linear algebra of vectors and matrices. (2) Analytical geometry of tridimensional space, with vector methods. (3) Complex algebra and equations. The knowledge of these topics is a prerequisite for several other courses, especially Physics, Mathematical Analysis II, Electrotechnics.	

Lecturers	Giovanni Modanese, Room B5.09, e-mail: Giovanni.Modanese@unibz.it, tel. +390471017134 https://www.unibz.it/it/faculties/engineering/academic- staff/person/494-giovanni-modanese Laura Levaggi, Room B5.10, e-mail: laura.levaggi@unibz.it, tel. 0471017131 https://www.unibz.it/it/faculties/engineering/academic- staff/person/27466-laura-levagqi
Scientific sector of the lecturer	MATH-04/A G. Modanese (ex MAT/07) MATH-03/A L. Levaggi (ex MAT/05)
Teaching language	English
Office hours	By appointment

Fakultät für Ingenieurwesen
Facoltà di Ingegneria
Faculty of Engineering

Teaching assistant (if any)	No
List of topics	
	- Vectors and geometry of space - Matrices and their operations - Determinants and rank - Linear systems - Complex numbers and equations - Spaces R^n - Abstract vector spaces - Eigenvectors and eigenvalues - Linear transformations
	Detail of contents: Vector spaces: operations in V_{0}^{2}, V_{0}^{3} and their properties. Vector space axioms. Linear combination. Basis. Spaces \mathbf{R}^{2}, $\mathbf{R}^{3}, \mathbf{R}^{n}$. Canonical basis. Isomorphism of a general n dimensional vector space with \mathbf{R}^{n}. Scalar product and norm in \mathbf{R}^{n}.
	Matrices. Definitions and operations. Vector space structure. Basis in $M_{m, n}(\mathbf{R})$. Product. Inverse matrix, transpose matrix and their properties.
	Linear systems. Matrix form, homogeneous case. Dimension of the solution space, Gauss triangulation method. Linear dependence and independence of vectors.
	Determinant and rank. Recursive definition, Laplace rule, properties. Computation of inverse matrices. Rank of a matrix: definition through determinants and linearly independent vectors.
	Linear transformations. Matrix representation. Nucleus. Isometries in \mathbf{R}^{2} : rotations, axial symmetries. Orthogonal matrices. Homothetic and affine transformations. Definition and computation of eigenvalues and eigenvectors of a linear transformation.
	Geometry of space. Vector product, mixed product: geometrical definition, computation in components, properties. Plane analytical geometry: bundles of straight lines, distance point-to-line. Cartesian equation of a plan in space. Cartesian and parametric equation of a straight line in space. Nonintersecting lines. Distance plane-to-point. Distance between planes, distance between non-intersecting lines.

	Complex numbers. Definitions, computational rules, real and imaginary part, conjugate. Properties and operations in the complex field. Complex division. The Gauss plane.
	Trigonometric form of complex numbers. Operations in trigonometric form. N-roots of complex numbers, computed through the trigonometric form. Equations in a complex variable.
Teaching format	Frontal lectures and exercises.

Learning outcomes

1) Knowledge and understanding of concepts, symbolism and techniques of linear algebra, analytical geometry of space, complex algebra.
2) Applying knowledge and understanding in solving exercises and problems which require a formalization, tools and methods learned in the course (for example, by solving linear systems, determining the rank and inverse of a matrix, decide whether some vectors are linearly independent, finding the Cartesian and parametric equations of straight lines and planes in space, solving an algebraic equation in the complex field).
3) Making judgments in tackling with the right approach and convenient tools problems and questions suitable to be formulated mathematically.
4) Communication skills in reporting on the calculations in a clear and effective way. This is also essential for the student to be able to check his/her own results and overcome deadlocks in the resolution procedure.
5) Learning skills through the acquisition and assimilation of a symbolism, methods and tools which are necessary to understand the content of a consistent part of the courses in this academic curriculum.

Assessment	Written exam, consisting in 8-10 exercises containing various specific questions. Summative assessment			
	Form	\%	Length /duration	ILOs assessed
	Written exam	100	3 hours	$1-5$

Fakultät für Ingenieurwesen
Facoltà di Ingegneria
Faculty of Engineering

	With reference is based on the 1) The stud place th explaine 2) The stud the corr and und 3) The stud lead to making choice of 4) The clar allows and 5) Altogeth examina learning allows to program	to Learn followin dent mu em exact d in the dent mu ect result erstand dent mu he final judgme f suitable ty and nd evalu er, the tion is skills of see wh or som	ning Outcomes 1-5, th ing points: ust understand the qu ctly in the context of course. ust solve the exercise ult, thus applying the ing of the course issu ust describe the calcula result, thus proving nts, this being eviden le solving methods. completeness of the uation of communica way in which the writ worked out allows to of the student; in partic hether the student m me sections are missi	e assessment estions and the theory and arrive at knowledge es. ations which the ability of ced by the description tion skills. ten assess the cular, it asters all the g.
Assessment language	English			
Evaluation criteria and criteria for awarding marks	The evaluation the exam to be equal to $18 / 30$. Relevant for as suitable solution and/or tools to the arguing, the the number of	is expre passed sessmen metho apply and ability exercise	essed through a unique , the mark has to be nt are: the identification od, the knowledge of and/or use, the logic and to correctly complete solved.	e mark. For greater or of a formulae and clarity of exercises,
Required readings	Geza Schay, A Birkhauser, 20 personal copy	$\begin{aligned} & \text { concise } \\ & \text { 2; e-IS } \end{aligned}$ an be	ntroduction to linea N 978-0-8176-8325 wnloaded from the	algebra, 2 (free Library).
Supplementary readings	Günter M. Gram Carl Hanser Ver M. Abate, "Geo M. Abate, "Alge	lich, „ lag. metria bra lin	ineare Algebra: Eine McGraw-Hill. are", McGraw-Hill.	Einführung",

